Parameterizing the relationship between motor cortical reactivation during sleep and motor skill acquisition in the freely behaving marmoset

参数化睡眠期间运动皮层重新激活与自由行为狨猴运动技能习得之间的关系

基本信息

  • 批准号:
    10658109
  • 负责人:
  • 金额:
    $ 208.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract This project will provide a more nuanced and mechanistic model of the role of sleep in memory consolidation, particularly as it pertains to procedural motor skill acquisition in a non-human primate model. Motor skill learning delineated by enhanced speed, automaticity, and accuracy of a correlate strongly with the duration of non-REM (NREM) sleep. Neural reactivations of daytime neural activity preferentially occur during NREM, and disruptions in NREM sleep negatively impacts memory consolidation. Since neural reactivations are not perfect copies of daytime activity it is unclear what specific information about behavior and skill acquisition is being reactivated during sleep. Do reactivations reflect certain parts or kinematic variables of the motor behavior conducted during the day? Do changes in these reactivations predict certain features of future motor skill improvements? We will develop a model that parameterizes the relationship between reactivation and memory by measuring the dependence of motor skill learning on the number of reactivations, the fidelity of reactivations, and, most importantly, the decodability of these reactivations each night and over subsequent nights. That is, we will build decoding algorithms that accurately predict upper limb movements from neural activity during the day and then use these algorithms to identify if spiking that is specific to certain kinematic variables are preferentially reactivated. We will use the natural process of retrograde interference when a subject learns a second motor skill following the first skill at various inter-task intervals to manipulate reactivation and skill acquisition to more causally link reactivation to motor skill acquisition. Finally, our model will enhance the standard sleep-consolidation framework using network science based tools to identify circuit level changes: with a particular emphasis on higher order relationships between superficial and deep neurons that are predictive of motor skill learning. To do so we will use wireless neural recordings from motor cortex (M1) in unrestrained marmoset monkeys (Callithrix jacchus) will examine motor skill acquisition and sleep- induced memory consolidation of these skills. Multi-electrode arrays with multiple contacts in depth will allow us to systematically parameterize the interdependence of reactivations and network changes across cortical lamina in M1 with motor skill performance. In Aim 1, we will measure changes in M1 population dynamics across cortical lamina as monkeys engage in naturalistic and artificial motor skill acquisition tasks. In Aim 2, we will characterize reactivations of skill-related neuronal activity patterns in M1 during sleep with a focus on the behaviorally-relevant information content of these reactivations using population decoding methods and functional network techniques. Finally, in Aim 3, we will examine retrograde interference and sleep reactivation to naturally manipulate reactivation and skill acquisition. These aims will provide one of the first and most comprehensive examinations of the role of sleep-induced reactivations of behaviorally relevant multineuronal activity patterns in motor skill acquisition of the primate.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas G Hatsopoulos其他文献

Nicholas G Hatsopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas G Hatsopoulos', 18)}}的其他基金

Cortical control and biomechanics of tongue movement
舌头运动的皮质控制和生物力学
  • 批准号:
    10781477
  • 财政年份:
    2023
  • 资助金额:
    $ 208.51万
  • 项目类别:
Sensory mechanisms of manual dexterity and their application to neuroprosthetics
手灵巧度的感觉机制及其在神经修复学中的应用
  • 批准号:
    10642915
  • 财政年份:
    2021
  • 资助金额:
    $ 208.51万
  • 项目类别:
Coding of Action by Motor & Premotor Cortical Ensembles
电机动作编码
  • 批准号:
    10377916
  • 财政年份:
    2019
  • 资助金额:
    $ 208.51万
  • 项目类别:
Coding of Action by Motor & Premotor Cortical Ensembles
电机动作编码
  • 批准号:
    9908190
  • 财政年份:
    2019
  • 资助金额:
    $ 208.51万
  • 项目类别:
Coding of Action by Motor & Premotor Cortical Ensembles
电机动作编码
  • 批准号:
    10600020
  • 财政年份:
    2019
  • 资助金额:
    $ 208.51万
  • 项目类别:
Coding of Action by Motor & Premotor Cortical Ensembles
电机动作编码
  • 批准号:
    9765773
  • 财政年份:
    2019
  • 资助金额:
    $ 208.51万
  • 项目类别:
Coding of action by motor & premotor cortical ensembles
电机动作编码
  • 批准号:
    6895493
  • 财政年份:
    2004
  • 资助金额:
    $ 208.51万
  • 项目类别:
Coding of Action by Motor & Premotor Cortical Ensembles
电机动作编码
  • 批准号:
    8579401
  • 财政年份:
    2004
  • 资助金额:
    $ 208.51万
  • 项目类别:
Coding of action by motor & premotor cortical ensembles
电机动作编码
  • 批准号:
    7807894
  • 财政年份:
    2004
  • 资助金额:
    $ 208.51万
  • 项目类别:
Coding of action by motor & premotor cortical ensembles
电机动作编码
  • 批准号:
    7082862
  • 财政年份:
    2004
  • 资助金额:
    $ 208.51万
  • 项目类别:

相似海外基金

Developing deep learning algorithms for studying infant brain and behavior relationships
开发深度学习算法来研究婴儿大脑和行为关系
  • 批准号:
    10263607
  • 财政年份:
    2021
  • 资助金额:
    $ 208.51万
  • 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
  • 批准号:
    10001503
  • 财政年份:
    2018
  • 资助金额:
    $ 208.51万
  • 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
  • 批准号:
    9789318
  • 财政年份:
    2018
  • 资助金额:
    $ 208.51万
  • 项目类别:
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
  • 批准号:
    1714672
  • 财政年份:
    2017
  • 资助金额:
    $ 208.51万
  • 项目类别:
    Standard Grant
EAGER: Using Learning Algorithms to Morph Product Behavior for Specific Task Contexts and Cognitive Styles of Users
EAGER:使用学习算法针对特定任务环境和用户认知风格来改变产品行为
  • 批准号:
    1548234
  • 财政年份:
    2015
  • 资助金额:
    $ 208.51万
  • 项目类别:
    Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
  • 批准号:
    1559588
  • 财政年份:
    2015
  • 资助金额:
    $ 208.51万
  • 项目类别:
    Continuing Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
  • 批准号:
    1254117
  • 财政年份:
    2013
  • 资助金额:
    $ 208.51万
  • 项目类别:
    Continuing Grant
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 208.51万
  • 项目类别:
    Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 208.51万
  • 项目类别:
    Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 208.51万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了