The interplay between kinematic and force representations in motor and somatosensory cortices during reaching, grasping, and object transport
伸手、抓握和物体运输过程中运动和体感皮层运动学和力表征之间的相互作用
基本信息
- 批准号:10546486
- 负责人:
- 金额:$ 62.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-15 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsAnimalsAreaArtificial ArmBehaviorBehavioralBiomimeticsBionicsBrainClinical TrialsCodeCommunicationComplexConsensusCutaneousDeafferentation procedureDevelopmentDigit structureElbowEventExclusionFeedbackFundingHandHand functionsHumanIndividualLimb ProsthesisLimb structureManualsMapsMeasuresMonitorMonkeysMotorMotor CortexMovementNeuronsParticipantPlayPopulationPostureResearchRoboticsRoleSensoryShapesShoulderSignal TransductionSiteSkinSomatosensory CortexStimulusSystems AnalysisTactileTechniquesTest ResultTextureTimeTouch sensationUnited States National Institutes of HealthWristactive controladvanced analyticsarmarm movementbrain computer interfacedesigndexteritydynamic systemexperienceexperimental studygraspimprovedinsightkinematicsmicrostimulationmotor behaviormotor learningneuralneuromechanismneuronal patterningneuroprosthesisnext generationnonhuman primatenovelresponserestorationsuccesstransmission process
项目摘要
PROJECT SUMMARY
Brain-Computer Interfaces (BCIs) have achieved remarkable progress over the last decade, including the direct
control of sophisticated anthropomorphic robotic arms and the incorporation of tactile feedback. However, the
dexterity of current brain-controlled prosthetic limbs is limited in two important ways. First, most neuroprosthetic
control involves decoding kinematics from the responses of neurons in primary motor cortex (M1). While this
approach has been successful for controlling the proximal arm (shoulder and elbow) to place and orient the
hand, it is fundamentally inadequate for hand control and interactions with objects, which requires not only
orienting the wrist and shaping the digits but also applying appropriate forces. This problem is complicated by
the fact that force and kinematic signals as well as hand and arm signals are all intermingled in the neural
population activity in M1. Furthermore, hand and arm representations of force and kinematics seem to depend
on the task, as evidenced by the fact that decoders developed for one task fail to generalize to another. Second,
tactile feedback is critical to manual behavior as evidenced by the severe deficits that result from deafferentation.
To achieve dexterous control of a prosthetic arm thus also requires restoration of tactile feedback. One promising
approach is intracortical microstimulation (ICMS) of somatosensory cortex (S1), which evokes vivid tactile
percepts experienced on the (otherwise insensate) hand. There is a growing consensus that mimicking
naturalistic patterns of neuronal activation will lead to more natural tactile percepts and more dexterous hand
use. However, the neural basis of touch has been studied almost exclusively with stimuli passively presented to
the unmoving hand, which precludes any understanding of how motor behavior shapes S1 responses and
hinders the development of biomimetic encoding algorithms.
To fill these gaps, we will have NHPs perform prehensile behaviors in which we systematically vary hand and
arm kinematics and forces, and measure the time-varying postures of the entire limb and the forces exerted on
objects, including contact forces at each digit. We seek to characterize (1) signals in M1 relating to kinematics
and forces exerted by the arm and hand; (2) signals in S1 relating to active interactions with objects; and (3)
signals transferred between M1 and S1. We propose to apply well-established encoding and decoding
techniques to investigate the relationship between neural responses and movement parameters as well as a
novel dynamical systems analysis. The resulting insights into the neural mechanisms of prehension will lead to
(1) the development of decoders of intended limb state from M1 responses that include both kinematics and
force control and generalize across behavioral tasks; (2) biomimetic sensory encoding algorithms informed by
an understanding of active touch representations in S1. The research team is uniquely poised to test the resulting
decoders and sensory encoding algorithms in human BCI participants as part an ongoing clinical trial at both
sites through an ongoing NIH funded project.
项目总结
脑-机接口(BCI)在过去的十年中取得了显著的进步,包括直接
控制复杂的拟人机械臂,并结合触觉反馈。然而,
目前脑控假肢的灵巧度受到两个重要方面的限制。首先,大多数神经假体
控制包括从初级运动皮质(M1)神经元的反应中解码运动学。虽然这件事
手术入路已成功控制近端手臂(肩部和肘部)以放置和定位
手,它从根本上不足以进行手控和与对象的交互,这不仅需要
调整手腕的方向,塑造脚趾,同时施加适当的力量。这个问题因以下原因而复杂化
力和运动学信号以及手和手臂信号都混合在神经中的事实
M1中的人口活动。此外,力和运动学的手和臂表示似乎依赖于
在任务上,为一个任务开发的解码器不能推广到另一个任务,这就是明证。第二,
触觉反馈对手动行为至关重要,这一点从去传入导致的严重缺陷中可见一斑。
因此,要实现对假肢的灵巧控制,还需要恢复触觉反馈。一件有希望的事
方法是皮质内微刺激(Icms)躯体感觉皮质(S1),它唤起生动的触觉。
在(否则无知觉的)手上感受到的知觉。越来越多的人一致认为,模仿
自然主义的神经元激活模式将导致更自然的触觉感知和更灵巧的手
使用。然而,对触摸的神经基础的研究几乎完全是通过被动地呈现给
不动的手,这排除了任何对运动行为如何塑造S1反应和
阻碍了仿生编码算法的发展。
为了填补这些空白,我们将让NHP执行抓取行为,在这些行为中,我们系统地改变手和
手臂运动学和力,并测量整个肢体的随时间变化的姿势和施加在
物体,包括每个指头的接触力。我们试图描述(1)M1中与运动学有关的信号
以及手臂和手所施加的力;(2)S1中与与物体的主动交互有关的信号;以及(3)
信号在M1和S1之间传输。我们建议使用成熟的编码和解码
研究神经反应和运动参数之间的关系的技术以及
新的动力系统分析。由此产生的对恐惧的神经机制的洞察将导致
(1)从M1响应中开发预期肢体状态的解码器,包括运动学和
力控制和跨行为任务泛化;(2)仿生感觉编码算法
理解S1中的主动触摸表示法。研究团队正准备测试由此产生的
作为正在进行的临床试验的一部分,在人类脑机接口参与者中的解码器和感觉编码算法
通过美国国立卫生研究院正在进行的一个资助项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer L. Collinger其他文献
Use of Cortical Surface Stimulation towards Reliable Sensation in Human
- DOI:
10.1016/j.apmr.2015.10.071 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:
- 作者:
Shivayogi V. Hiremath;Elizabeth C. Tyler-Kabara;Jesse Wheeler;Daniel W. Moran;Robert A. Gaunt;Jennifer L. Collinger;Stephen Thomas Foldes;Douglas John Weber;Weidong Chen;Michael Boninger;Wei Wang - 通讯作者:
Wei Wang
Evoking stable and precise tactile sensations via multi-electrode intracortical microstimulation of the somatosensory cortex
通过体感皮层的多电极皮层内微刺激唤起稳定而精确的触觉感受
- DOI:
10.1038/s41551-024-01299-z - 发表时间:
2024-12-06 - 期刊:
- 影响因子:26.600
- 作者:
Charles M. Greenspon;Giacomo Valle;Natalya D. Shelchkova;Taylor G. Hobbs;Ceci Verbaarschot;Thierri Callier;Ev I. Berger-Wolf;Elizaveta V. Okorokova;Brianna C. Hutchison;Efe Dogruoz;Anton R. Sobinov;Patrick M. Jordan;Jeffrey M. Weiss;Emily E. Fitzgerald;Dillan Prasad;Ashley Van Driesche;Qinpu He;Fang Liu;Robert F. Kirsch;Jonathan P. Miller;Ray C. Lee;David Satzer;Jorge Gonzalez-Martinez;Peter C. Warnke;Abidemi B. Ajiboye;Emily L. Graczyk;Michael L. Boninger;Jennifer L. Collinger;John E. Downey;Lee E. Miller;Nicholas G. Hatsopoulos;Robert A. Gaunt;Sliman J. Bensmaia - 通讯作者:
Sliman J. Bensmaia
Jennifer L. Collinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer L. Collinger', 18)}}的其他基金
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
- 批准号:
10838152 - 财政年份:2023
- 资助金额:
$ 62.83万 - 项目类别:
Development of an EMG-controlled BCI for biomimetic control of hand movement in humans
开发 EMG 控制的 BCI,用于仿生控制人类手部运动
- 批准号:
10651404 - 财政年份:2023
- 资助金额:
$ 62.83万 - 项目类别:
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
- 批准号:
10548865 - 财政年份:2022
- 资助金额:
$ 62.83万 - 项目类别:
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
- 批准号:
10363903 - 财政年份:2022
- 资助金额:
$ 62.83万 - 项目类别:
Influence of Task Complexity and Sensory Feedback on Cortical Control of Grasp Force
任务复杂性和感觉反馈对皮质控制握力的影响
- 批准号:
10705074 - 财政年份:2021
- 资助金额:
$ 62.83万 - 项目类别:
Influence of task complexity and sensory feedback on cortical control of grasp force
任务复杂性和感觉反馈对皮质控制抓握力的影响
- 批准号:
10289762 - 财政年份:2021
- 资助金额:
$ 62.83万 - 项目类别:
Influence of task complexity and sensory feedback on cortical control of grasp force
任务复杂性和感觉反馈对皮质控制抓握力的影响
- 批准号:
10480085 - 财政年份:2021
- 资助金额:
$ 62.83万 - 项目类别:
Eighth International Brain Computer Interface Meeting
第八届国际脑机接口会议
- 批准号:
9913702 - 财政年份:2020
- 资助金额:
$ 62.83万 - 项目类别:
Context-dependent processing in sensorimotor cortex
感觉运动皮层的上下文相关处理
- 批准号:
9791028 - 财政年份:2018
- 资助金额:
$ 62.83万 - 项目类别:
Investigation of Cortical Changes Following Spinal Cord Injury
脊髓损伤后皮质变化的调查
- 批准号:
8200932 - 财政年份:2012
- 资助金额:
$ 62.83万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 62.83万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 62.83万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 62.83万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 62.83万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 62.83万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 62.83万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 62.83万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 62.83万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 62.83万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 62.83万 - 项目类别:
Research Grant














{{item.name}}会员




