Collaborative Proposal: Stringy Invariants, Orbicurves, and Topological Field Theory

合作提案:弦不变量、轨道曲线和拓扑场论

基本信息

  • 批准号:
    0605172
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

The Principal Investigators will further develop and use their recent results in orbifold cohomology, orbifold K-theory and the orbifold Cherncharacter. They will expand their work on the obstruction bundle to include orbifold Gromov-Witten theory which will have implications not only forcalculations, but also important theoretical significance. Secondly, they will generalize their constructions of stringy and orbifold K-theory andcohomology from the case of a finite group to the case of a non-Abelian,infinite group with possibly infinite stabilizers. Third, they will study invariants arising from their stringy and orbifold Chern characters. Inparticular, they will investigate the Chern classes and similar structures in the stringy and orbifold settings. Finally, they will examine the relation of these invariants to their counterparts on various hyper-Kaehler andcrepant resolutions of the underlying singular spaces.Invariants of spaces are fundamental tools in topology and geometry. The development of new invariants is of great importance to these fields, as it provides new tools to identify and describe essential properties of geometric and topological spaces. Invariants also appear in theoretical physicsas observables in topological quantum field theories, for example. In many physical and mathematical settings, the spaces of greatest importance also havesymmetries, and it is important to understand how those symmetries interact with the geometric and topological properties of the space. Recently, the PIs have developed new invariants of spaces with symmetries (stringyK-theory) and have also made important progress in describing connections between their new invariants and previously known invariants, such asorbifold cohomology. They have also used their newly developed tools torefine and simplify many aspects of those previously known invariants. With the support of this grant, the PIs will use their theory of stringy K- theory as well as their improvements on orbifold cohomology to study spaces with symmetries. They will also further develop these tools to extend theirapplicability to more types of spaces, including spaces with continuoussymmetries, which are common throughout mathematics and physics.They will also develop new invariants of such spaces, includingenhancements of well-known classical invariants such as Chern classes,but accounting for symmetries. Such invariants are suggested bytopological string theory and will provide powerful tools for understanding these spaces.
主要研究人员将进一步发展和利用他们在轨道上同调、轨道k理论和轨道陈氏性质方面的最新成果。他们将扩展他们关于阻塞束的工作,包括轨道Gromov-Witten理论,这不仅对计算有影响,而且具有重要的理论意义。其次,他们将弦和轨道k理论和上同调的构造从有限群推广到具有可能无限稳定子的非阿贝尔无限群的情况。第三,他们将研究由它们的弦和轨道陈氏特征引起的不变量。特别是,他们将研究陈类和类似的结构在弦和轨道设置。最后,他们将研究这些不变量与它们的对应物在潜在奇异空间的各种超kaehler和crepetresolution上的关系。空间不变量是拓扑学和几何学中的基本工具。新不变量的发展对这些领域非常重要,因为它为识别和描述几何和拓扑空间的基本性质提供了新的工具。不变量也出现在理论物理中,例如拓扑量子场论中的可观测值。在许多物理和数学环境中,最重要的空间也具有对称性,了解这些对称性如何与空间的几何和拓扑特性相互作用是很重要的。最近,pi开发了具有对称性的空间的新不变量(stringyK-theory),并在描述新不变量与先前已知不变量之间的联系(如轨道上同调)方面取得了重要进展。他们还使用他们新开发的工具来改进和简化那些以前已知的不变量的许多方面。在这笔资金的支持下,pi将利用他们的弦K理论以及他们对轨道上同调的改进来研究具有对称性的空间。他们还将进一步开发这些工具,将它们的适用性扩展到更多类型的空间,包括具有连续对称性的空间,这在数学和物理中很常见。他们还将开发这种空间的新不变量,包括对著名的经典不变量(如陈氏类)的增强,但要考虑对称性。这种不变量是由拓扑弦理论提出的,将为理解这些空间提供强大的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Takashi Kimura其他文献

Ex-vivo pretreatment of islets with Mitomycin-C have a potential to induce specific immune response for peripheral tolerance.
用丝裂霉素-C 对胰岛进行离体预处理,有可能诱导外周耐受的特异性免疫反应。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naoya Sato;Akira Kenjo;Takashi Kimura;Ryo Okada;Terushige Ishigame;Yasuhide Kofunato;Junichiro Watanabe;Makoto Muto;Seiko Suzushino;Shigeru Marubashi
  • 通讯作者:
    Shigeru Marubashi
コレステリックブルー相の共焦点顕微鏡像の数値計算
胆甾蓝相共聚焦显微镜图像的数值计算
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Krishna P. Khakurel;Takashi Kimura;Yasumasa Joti;Satoshi Matsuyama;Kazuto Yamauchi;and Yoshinori Nishino;中元真美・松本聡・山中佳子・清水洋・中道治久・市原美恵・及川純;福田順一,奥村泰志,菊池裕嗣
  • 通讯作者:
    福田順一,奥村泰志,菊池裕嗣
金ナノロッドをコアとするAu@Pdコアシェル微結晶のエピタキシャル液相合成
以金纳米棒为核心的Au@Pd核壳微晶的外延液相合成
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takashi Kimura;Satoshi Matsuyama;Kazuto Yamauchi;Yoshinori Nishino;Coherent x-ray;池堂浩史
  • 通讯作者:
    池堂浩史
通過交通の侵入を防ぐ住区内道路網設計問題
住宅区防止过往交通侵入的路网设计问题
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eom;S. and Suzuki;T;Takashi Kimura;小林隆史;鈴木勉
  • 通讯作者:
    鈴木勉
Substantial enhancement of thermal spin polarization in Py/Cu interface
Py/Cu 界面热自旋极化的显着增强
  • DOI:
    10.1103/physrevmaterials.2.104403
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Shaojie Hu;Jingyan Zhao;Lei Wang;Xiaomin Cui;Kohei Ohnishi;Taisei Ariki;Tai Min;Ke Xia;Takashi Kimura
  • 通讯作者:
    Takashi Kimura

Takashi Kimura的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Takashi Kimura', 18)}}的其他基金

Orbifolds, Higher Spin Curves, and Algebraic Structures
轨道折叠、高自旋曲线和代数结构
  • 批准号:
    0204824
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Moduli Spaces: Their Topology and Representations
模空间:它们的拓扑和表示
  • 批准号:
    9803427
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9206294
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award

相似海外基金

RESEARCH PROPOSAL What is your project title? Development of additive manufactured polymeric seals for low molecular weight gases
研究计划 您的项目名称是什么?
  • 批准号:
    2908868
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
  • 批准号:
    24K17404
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Proposal Title : NemeSys - Smart Multiphasic Nanoreactors Based On Tailored Foams for Direct H2O2 Synthesis
提案标题:NemeSys - 基于定制泡沫的智能多相纳米反应器,用于直接合成 H2O2
  • 批准号:
    EP/Y034392/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Conference: Supporting Mentoring in STEM Graduate Education: A Proposal for Virtual Workshops and Supporting Activities
会议:支持 STEM 研究生教育辅导:虚拟研讨会和支持活动的提案
  • 批准号:
    2413980
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
  • 批准号:
    2424057
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Travel: Texas Power and Energy Conference (TPEC) 2024 Travel Proposal
旅行:德克萨斯州电力与能源会议 (TPEC) 2024 年旅行提案
  • 批准号:
    2341300
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Business and Local Government Data Research Centre Legacy Status Proposal
企业和地方政府数据研究中心遗留状态提案
  • 批准号:
    ES/Y003411/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Conference: Proposal for Student Participation Grant and Distinguished Speakers in Health Community
会议:学生参与补助金和健康社区杰出演讲者的提案
  • 批准号:
    2313255
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Equipment: Woods Hole Oceanographic Institution 2023 OI Proposal
设备:伍兹霍尔海洋研究所 2023 年 OI 提案
  • 批准号:
    2313654
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了