Moduli Spaces: Their Topology and Representations
模空间:它们的拓扑和表示
基本信息
- 批准号:9803427
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9803427 Kimura This project's goal is to study the "representation ring," in the appropriate sense, of the (homology groups of the) moduli space of curves and its close cousins. Such objects are rigorous constructions of nontrivial topological quantum field theories. In the case of the moduli space of curves, the corresponding representations are cohomological field theories (in the sense of Kontsevich and Manin), the most dramatic examples of which arise from Gromov-Witten invariants of a smooth projective variety. The investigator will study properties of canonical families of such structures arising from the geometry of these moduli spaces, using techniques borrowed from homotopy theory (operads), algebraic geometry (moduli spaces), and quantum field theory (Feynman diagrams). Recently, much of the interaction between mathematics and theoretical physics has revolved about topological quantum field theories, quantum field theories whose observables correspond to topological invariants. A rigorous construction of a nontrivial class of such theories is now possible through the study of Gromov-Witten invariants, topological invariants associated to a certain space of maps from Riemann surfaces into a Kahler manifold. The purpose of this project is to study natural families of such theories (and their relatives) that arise from the geometry of these spaces and to understand their properties under natural operations suggested by the geometry. Success should shed light on both the mathematics and the physics involved. ***
这个项目的目标是在适当的意义上研究曲线模空间及其近亲的(同调群)的“表示环”。这些对象是非平凡拓扑量子场论的严格构造。在曲线模空间的情况下,相应的表示是上同场理论(在Kontsevich和Manin的意义上),其中最引人注目的例子来自光滑射影变的Gromov-Witten不变量。研究者将使用从同伦理论(操作数)、代数几何(模空间)和量子场论(费曼图)中借来的技术,研究由这些模空间的几何产生的这些结构的正则族的性质。最近,数学和理论物理之间的许多相互作用都围绕着拓扑量子场论,量子场论的可观测值对应于拓扑不变量。通过研究Gromov-Witten不变量,以及从黎曼曲面到Kahler流形的映射空间的拓扑不变量,我们可以严格地构造出这类非平凡的理论。这个项目的目的是研究这些理论(及其相关理论)的自然族,这些理论(及其相关理论)产生于这些空间的几何形状,并了解它们在几何形状暗示的自然运算下的性质。成功应该同时说明所涉及的数学和物理。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Takashi Kimura其他文献
Ex-vivo pretreatment of islets with Mitomycin-C have a potential to induce specific immune response for peripheral tolerance.
用丝裂霉素-C 对胰岛进行离体预处理,有可能诱导外周耐受的特异性免疫反应。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Naoya Sato;Akira Kenjo;Takashi Kimura;Ryo Okada;Terushige Ishigame;Yasuhide Kofunato;Junichiro Watanabe;Makoto Muto;Seiko Suzushino;Shigeru Marubashi - 通讯作者:
Shigeru Marubashi
コレステリックブルー相の共焦点顕微鏡像の数値計算
胆甾蓝相共聚焦显微镜图像的数值计算
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Krishna P. Khakurel;Takashi Kimura;Yasumasa Joti;Satoshi Matsuyama;Kazuto Yamauchi;and Yoshinori Nishino;中元真美・松本聡・山中佳子・清水洋・中道治久・市原美恵・及川純;福田順一,奥村泰志,菊池裕嗣 - 通讯作者:
福田順一,奥村泰志,菊池裕嗣
金ナノロッドをコアとするAu@Pdコアシェル微結晶のエピタキシャル液相合成
以金纳米棒为核心的Au@Pd核壳微晶的外延液相合成
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Takashi Kimura;Satoshi Matsuyama;Kazuto Yamauchi;Yoshinori Nishino;Coherent x-ray;池堂浩史 - 通讯作者:
池堂浩史
通過交通の侵入を防ぐ住区内道路網設計問題
住宅区防止过往交通侵入的路网设计问题
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Eom;S. and Suzuki;T;Takashi Kimura;小林隆史;鈴木勉 - 通讯作者:
鈴木勉
Substantial enhancement of thermal spin polarization in Py/Cu interface
Py/Cu 界面热自旋极化的显着增强
- DOI:
10.1103/physrevmaterials.2.104403 - 发表时间:
2018-10 - 期刊:
- 影响因子:3.4
- 作者:
Shaojie Hu;Jingyan Zhao;Lei Wang;Xiaomin Cui;Kohei Ohnishi;Taisei Ariki;Tai Min;Ke Xia;Takashi Kimura - 通讯作者:
Takashi Kimura
Takashi Kimura的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Takashi Kimura', 18)}}的其他基金
Collaborative Proposal: Stringy Invariants, Orbicurves, and Topological Field Theory
合作提案:弦不变量、轨道曲线和拓扑场论
- 批准号:
0605172 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Orbifolds, Higher Spin Curves, and Algebraic Structures
轨道折叠、高自旋曲线和代数结构
- 批准号:
0204824 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9206294 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Fellowship Award
相似海外基金
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Complex geometry of orbifold pairs and of their moduli spaces; structure, classification and relation to arithmetic geometry
轨道对及其模空间的复杂几何;
- 批准号:
RGPIN-2022-05387 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Geometry of Moduli spaces of Connections and Higgs fields and their Applications
联结模空间和希格斯场的几何及其应用
- 批准号:
22K18669 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Complex geometric structures and their moduli on Lie groups and homogeneous spaces
李群和齐次空间上的复杂几何结构及其模
- 批准号:
21K03248 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Locally Homogeneous Geometric Manifolds and Their Moduli Spaces
职业:局部齐次几何流形及其模空间
- 批准号:
1945493 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Hyperbolic Manifolds and Their Moduli Spaces
双曲流形及其模空间
- 批准号:
1904130 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Construction of random points in moduli spaces and their geometry (A09)
模空间中随机点的构造及其几何形状(A09)
- 批准号:
324810830 - 财政年份:2017
- 资助金额:
-- - 项目类别:
CRC/Transregios
Complexes on algebraic varieties and their moduli spaces
代数簇及其模空间上的复形
- 批准号:
26287007 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Algebraic Varieties and Principal Bundles: Semistable Objects and their Moduli Spaces (A11)
代数簇和主丛:半稳定对象及其模空间 (A11)
- 批准号:
117125012 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Collaborative Research Centres