A Free Discontinuity Approach to Brittle Fracture Mechanics: Analysis and Numerical Implementation

脆性断裂力学的自由间断方法:分析和数值实现

基本信息

  • 批准号:
    0605320
  • 负责人:
  • 金额:
    $ 15.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

BourdinDMS-0605320 The investigator extends the analysis and the numericalimplementation of a Free-Discontinuity approach to brittlefracture mechanics proposed by G. Francfort and J-J. Marigo. This formulation departs from the classical Griffith theory whilepreserving its essence, the competition between surface and bulkterms. Doing so, it allows to address the issues of crack pathdetermination, creation of new cracks, and interactions betweencracks. Its numerical implementation is based on aGamma-convergence approximation, which gives a natural way toconsider global minimizations over all possible crack sets. Theinvestigator extends the existing model to account for thepropagation of cracks under thermal loads and in heterogeneousmedia and conduct numerical experiments in these areas. Hebuilds a robust numerical algorithm avoiding most localminimizers, and studies the link between Gamma-convergence andlocal minimizers for this model. He implements an overlappingdomain decomposition method on supercomputers and studies therelation between discretization and regularization parameters. Fracture mechanics is a very active area of research, withvital applications. In recent years, the unexpected collapse ofterminal 2F at Charles de Gaulle airport in France, thedisintegration the Columbia space shuttle upon re-entry, and thecrash of American Airlines Flight 582 over Queens, NY were alllinked to unpredicted and unexplained fracture. In the area ofbrittle fracture (which encompasses materials as diverse asceramics, glass, and concrete), most commonly accepted theoriesare based on Griffith's criterion and are limited to thepropagation of an isolated, pre-existing crack along a givenpath. The investigator extends the analysis and the numericalimplementation of a generalization of Griffith's theory, proposedby G. Francfort and J.J. Marigo, that eliminates theserestrictions. He extends the current model to account for moregeneral problems (thermal loads, heterogeneous materials), andimproves the current numerical implementation on supercomputers.
在BourdinDMS-0605320中,研究者扩展了G.Francfort和J-J提出的脆性断裂力学的自由不连续方法的分析和数值实现。马里戈。这个公式不同于经典的格里菲斯理论,同时保留了它的本质,即表面项和体项之间的竞争。这样做,它就可以解决裂纹路径确定、新裂纹的产生以及支架之间的相互作用等问题。它的数值实现基于Gamma收敛近似,这给出了一种自然的方法来考虑所有可能的裂纹集上的全局最小化。研究人员扩展了现有的模型以考虑热载荷和非均匀介质中裂纹的扩展,并在这些区域进行了数值实验。建立了一个稳健的数值算法,避免了大多数局部极小点,并研究了该模型的Gamma收敛与局部极小点之间的联系。他在超级计算机上实现了重叠区域分解方法,并研究了离散化和正则化参数之间的关系。断裂力学是一个非常活跃的研究领域,有着重要的应用。近年来,法国戴高乐机场2F航站楼的意外坍塌,哥伦比亚号航天飞机在重返大气层时解体,以及美国航空公司582航班在纽约皇后区上空坠毁,都与不可预测和无法解释的骨折有关。在脆性断裂领域(包括各种材料,如陶瓷、玻璃和混凝土),最普遍接受的理论是基于格里菲斯准则的,并且局限于孤立的、预先存在的裂纹沿给定路径的扩展。研究人员扩展了G.Francfort和J.J.Marigo提出的格里菲斯理论的推广,消除了这些限制,并进行了分析和数值实现。他扩展了目前的模型以考虑更一般的问题(热负荷、非均质材料),并改进了目前在超级计算机上的数值实现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Blaise Bourdin其他文献

Systematic Design of Compliant Morphing Structures: A Phase-Field Approach
  • DOI:
    10.1007/s00245-025-10237-7
  • 发表时间:
    2025-02-24
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Jamal Shabani;Kaushik Bhattacharya;Blaise Bourdin
  • 通讯作者:
    Blaise Bourdin
Grain-size dependence of plastic-brittle transgranular fracture
塑-脆穿晶断裂的晶粒尺寸依赖性
  • DOI:
    10.1016/j.jmps.2025.106116
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Jean-Michel Scherer;Mythreyi Ramesh;Blaise Bourdin;Kaushik Bhattacharya
  • 通讯作者:
    Kaushik Bhattacharya

Blaise Bourdin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Blaise Bourdin', 18)}}的其他基金

Diffusion-Driven Fracture
扩散驱动断裂
  • 批准号:
    1716763
  • 财政年份:
    2017
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Standard Grant
DMREF: Designing Microstructure for Engineering Toughness
DMREF:设计微观结构以提高工程韧性
  • 批准号:
    1535076
  • 财政年份:
    2015
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Standard Grant
Variational approaches to defect mechanics
缺陷力学的变分方法
  • 批准号:
    1312739
  • 财政年份:
    2013
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Standard Grant
Applications of Variational Fracture: Enhanced Geothermal Systems
变分断裂的应用:增强型地热系统
  • 批准号:
    0908267
  • 财政年份:
    2009
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Standard Grant

相似海外基金

New perspective of moving-boundary flow analysis by the stress tensor discontinuity-based immersed boundary method
基于应力张量不连续性的浸没边界法进行动边界流分析的新视角
  • 批准号:
    23H01341
  • 财政年份:
    2023
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Global Search for D" Discontinuity Structure
全局搜索 D" 不连续结构
  • 批准号:
    2132400
  • 财政年份:
    2022
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Standard Grant
Research on the emergence and formation of forward integration by home appliance manufactures in Japan: prewar-postwar continuity and discontinuity
日本家电制造商前向一体化的产生与形成研究:战前战后的连续性与间断性
  • 批准号:
    22K01775
  • 财政年份:
    2022
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Continuity and Discontinuity of Irrigation "Customs" in Early Colonial Taiwan
早期台湾殖民地灌溉“习俗”的延续与断续
  • 批准号:
    21K13114
  • 财政年份:
    2021
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Topics in Threshold Models: Efficient Procedures under Endogeneity in Regression Discontinuity Designs and Distributed and Robust Estimation of Change-Points
阈值模型主题:回归间断设计中内生性下的有效程序以及变化点的分布式鲁棒估计
  • 批准号:
    2113364
  • 财政年份:
    2021
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Standard Grant
New Developments in Regression Discontinuity Designs: Covariates Adjustment and Coverage Optimal Inference
不连续性回归设计的新进展:协变量调整和覆盖最优推理
  • 批准号:
    21K01419
  • 财政年份:
    2021
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ManagemenT of chronIc cardioMetabolic diseasE and treatment diScontinuity in adult ADHD PAtieNts (TIMESPAN)
成人 ADHD 患者慢性心脏代谢疾病的管理和治疗中断 (TIMESPAN)
  • 批准号:
    nhmrc : 2007048
  • 财政年份:
    2021
  • 资助金额:
    $ 15.3万
  • 项目类别:
    International Collaborations
A Regression Discontinuity Study of the Impact of Mathematics Achievement Fund on Student Outcomes
数学成绩基金对学生成绩影响的断点回归研究
  • 批准号:
    2000483
  • 财政年份:
    2020
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Standard Grant
The Discontinuity Effect: The Interaction of Joint Decision-Making with Formal and Informal Sanction Mechanisms
不连续性效应:联合决策与正式和非正式制裁机制的相互作用
  • 批准号:
    2204999
  • 财政年份:
    2019
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Studentship
Inference of spacio-temporal distribution of physical quantities with discontinuity
不连续物理量时空分布的推断
  • 批准号:
    19K12057
  • 财政年份:
    2019
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了