Atomic Scale Characterization and Modeling of Silicon Nitride/Rare-Earth Oxide Interfaces
氮化硅/稀土氧化物界面的原子尺度表征和建模
基本信息
- 批准号:0605964
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-15 至 2010-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTION: Bulk silicon nitride (Si3N4) ceramics have been investigated extensively over the last twenty years due to their desirable mechanical and physical properties in many high temperature applications. An intrinsic characteristic of Si3N4 ceramics, on the other hand, is their brittleness (fragility), which limits their use and reliability as structural components. It has been demonstrated that doping the grain boundaries of Si3N4 with rare-earth oxides decreases this intrinsic brittleness, and improves its mechanical properties. In this program, the aim is to take a significant step in a fundamental atomic understanding of the structure-property relationships of Si3N4 grain boundaries by using advanced methods of structural and electronic characterization in state-of-the-art scanning transmission electron microscopes and state-of-the-art first-principles (parameter-free) calculations. Such atomic understanding is the most important step in achieving a real breakthrough in tailoring the mechanical properties of Si3N4 for better device applications. Additionally, this work includes significant training of undergraduate and graduate students in the most advanced experimental characterization methods and computational modeling studies, used in the research and development industry. Training students along both experimental and theoretical disciplines is a unique aspect of the proposed activity, and is expected to offer a wider range of career opportunities for the students in the current competitive job market. TECHNICAL DESCRIPTION: In this program, the PIs propose to investigate the structure-property relationships in the Si3N4/rare-earth oxides interfaces using two state-of-the-art experimental and computational modeling techniques: (1) atomic-resolution Z-contrast imaging and electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM), and (2) first principles calculations based on density functional theory (DFT). The experimental methods that will be used in these studies have already been shown to provide unique information on the link between structure, bonding, and composition of these interfaces with the material properties of silicon nitride. DFT, with this very good track record in computational materials science, is the most widely used theoretical tool to accurately study structure-property relationships in structurally and chemically complex materials. In particular, in the proposed research program the PIs, using a unique combination of these experimental and theoretical techniques, aim to understand how the interfacial atomic and electronic structures are controlled by oxygen and the size/electronic structure of the different rare-earth elements. This information is crucial in order to achieve a real breakthrough in tailoring the mechanical properties of Si3N4 for better device applications. Additionally, this work includes significant training of undergraduate and graduate students in the most advanced experimental characterization methods and computational modeling studies, used in the research and development industry. Training students along both experimental and theoretical disciplines is an important aspect of the proposed activity, and is expected to offer a wider range of career opportunities for the students in a competitive job market.
非技术描述:氮化硅(Si_3N_4)块体陶瓷由于其良好的机械和物理性能在高温下得到了广泛的应用,在过去的20年里得到了广泛的研究。另一方面,Si 3 N4陶瓷的固有特性是它们的脆性(易碎性),这限制了它们作为结构部件的使用和可靠性。 已经证明,用稀土氧化物掺杂Si 3 N4的晶界降低了这种固有的脆性,并改善了其机械性能。 在该计划中,目的是通过使用先进的扫描透射电子显微镜和最先进的第一原理(无参数)计算中的结构和电子表征方法,在Si 3 N4晶界的结构-性能关系的基本原子理解中迈出重要一步。 这样的原子理解是最重要的一步,在实现一个真实的突破,在定制的机械性能的氮化硅更好的设备应用。 此外,这项工作还包括对本科生和研究生进行最先进的实验表征方法和计算建模研究的重要培训,用于研发行业。培训学生沿着实验和理论学科是一个独特的方面,拟议的活动,预计将提供更广泛的就业机会,为学生在当前竞争激烈的就业市场。 技术说明:在该计划中,PI建议使用两种最先进的实验和计算建模技术研究Si 3 N4/稀土氧化物界面的结构-性能关系:(1)扫描透射电子显微镜(STEM)中的原子分辨率Z衬度成像和电子能量损失谱(EELS),以及(2)基于密度泛函理论(DFT)的第一性原理计算。 将用于这些研究的实验方法已经被证明可以提供关于这些界面的结构、键合和组成与氮化硅材料特性之间联系的独特信息。DFT在计算材料科学中有着非常好的记录,是最广泛使用的理论工具,可以准确地研究结构和化学复杂材料的结构-性能关系。 特别是,在拟议的研究计划中,PI使用这些实验和理论技术的独特组合,旨在了解界面原子和电子结构如何受氧和不同稀土元素的尺寸/电子结构控制。 这一信息是至关重要的,以实现真实的突破,在定制的Si 3 N4的机械性能,更好的设备应用。 此外,这项工作还包括对本科生和研究生进行最先进的实验表征方法和计算建模研究的重要培训,用于研发行业。培训学生沿着实验和理论学科是拟议活动的一个重要方面,并预计将提供更广泛的就业机会,为学生在竞争激烈的就业市场。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Idrobo其他文献
Juan Idrobo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Idrobo', 18)}}的其他基金
Atomic Scale Study of High-Temperature Iron-Based Superconductors
高温铁基超导体的原子尺度研究
- 批准号:
0938330 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2425965 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Development of electron microscopy for atomic-scale characterization of low-dimensional heterostructures
用于低维异质结构原子尺度表征的电子显微镜的发展
- 批准号:
22K04886 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2005006 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2005064 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Atomic-scale characterization of defects and dislocations using cross-sectional SPM: Application to GaN
使用截面 SPM 进行缺陷和位错的原子尺度表征:在 GaN 中的应用
- 批准号:
17K06366 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of atomic-scale characterization for low-dimensional materials
低维材料原子尺度表征的发展
- 批准号:
17H04797 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (A)
Atomic-scale characterization on lithium-ion battery electrodes by using vacuum electrochemical AFM
使用真空电化学 AFM 对锂离子电池电极进行原子尺度表征
- 批准号:
17H02787 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Atomic Scale Design of Nanostructures Using In Situ Characterization-Based Kinetic Models
使用基于原位表征的动力学模型进行纳米结构的原子尺度设计
- 批准号:
1507370 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Atomic scale characterization of low-dimensional materials confined in a nanospace
限制在纳米空间中的低维材料的原子尺度表征
- 批准号:
26870907 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
GOALI: Atomic Scale Modeling and Experimental Characterization of Non-Basal Deformation Modes in Mg Alloys
GOALI:镁合金非基础变形模式的原子尺度建模和实验表征
- 批准号:
1309687 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant