GOALI: Atomic Scale Modeling and Experimental Characterization of Non-Basal Deformation Modes in Mg Alloys

GOALI:镁合金非基础变形模式的原子尺度建模和实验表征

基本信息

  • 批准号:
    1309687
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

Technical Abstract: This project will provide a scientific basis for a quantitative and systematic approach to design Magnesium alloys with favorable combinations of strength and ductility through selective alloying. The approach is based on electronic-structure calculations of non-basal deformation modes including c+a slip and twinning including accurately accounting for chemistry effects due to alloying coupled with experimental observation and verification of computational predictions. Ab initio and atomistic simulations will be done to investigate (i) Mechanisms for tension twin nucleation and alloys that promote nucleation and growth of twins (ii) the core structures and mobility of c+a dislocations in Mg (iii) effects of alloying on the structure and collective behavior of c+a dislocations. Conventional transmission electron microscopy including bright field, and weak beam techniques will be conducted on deformed single crystal of Mg and binary Mg alloys to understand the effect of chemistry on c+a dislocations -based deformation response for specific forms of loading. This will provide connections to computations. Furthermore, aberration-corrected high resolution electron microscopy of dislocation core structures will enable a more direct connection with results from computations. The experiments and computations together will provide a comprehensive understanding of non-basal deformation in Mg alloys, the effect of chemistry on its relative ease, and a pathway to microstructurally-guided and scientifically-informed alloy design.Non-technical Abstract: The high strength-to-weight ratio of magnesium and magnesium-based alloys makes them excellent candidates for the transportation sector and in particular, the automotive industry that is focused on producing lighter-weight, more fuel-efficient vehicles. However, limited room temperature formability (a feature required to produce useful shapes by forming in a die for example) has prohibited the widespread use of Mg alloys. Forming at elevated temperatures adds cost and makes the material less competitive. Formability is related to the ease of plastic deformation, a phenomenon that is facilitated by atomic level processes called slip and/or twinning. In essence, these atomic level mechanisms are the material's response to application of external forces and these mechanisms enable permanent macroscopic shape change in a material, referred to as plastic deformation. Difficulty in plastic deformation encourages an alternate undesirable response which is premature failure/fracture. In the case of magnesium alloys, the limited formability is related to anisotropic plastic deformation. This means plastic deformation is easy in some directions of the sheet that is being formed but not in others. The cause of this anisotropy lies in the strong differentials in stress (or force) needed to trigger some forms of plastic deformation as opposed to others, a characteristic of this alloy system. This project is focused on identifying alloying elements using a combination of computations and experiments that can reduce the critical stress differential between these deformation modes to facilitate isotropic plastic deformation and thereby improve room temperature formability.
技术摘要:该项目将为通过选择性合金化设计具有良好强度和塑性组合的镁合金的定量和系统方法提供科学依据。该方法基于包括c+a滑移和孪生在内的非基本形变模式的电子结构计算,包括对合金化引起的化学效应的精确计算,并结合实验观察和计算预测的验证。用从头算和原子模拟方法研究了(I)拉伸孪晶形核和合金促进孪晶形核和长大的机制(Ii)Mg中c+a位错的核心结构和迁移率(Iii)合金化对c+a位错结构和集体行为的影响。对变形后的镁单晶和二元镁合金进行常规的电子显微镜观察,包括强场和弱束技术,以了解在特定加载形式下,化学作用对基于位错的c+a位错变形响应的影响。这将为计算提供连接。此外,位错核结构的像差校正高分辨率电子显微镜将使计算结果更直接地联系在一起。这些实验和计算将提供对镁合金非基本变形的全面了解,化学对其相对易感性的影响,以及实现微观组织指导和科学信息的合金设计的途径。非技术摘要:镁和镁基合金的高强度/重量比使它们成为交通运输部门的优秀候选者,特别是专注于生产更轻、更省油的汽车的汽车工业。然而,有限的室温成形性(例如,通过在模具中成形来生产有用的形状所需的特征)限制了镁合金的广泛使用。在高温下成型增加了成本,降低了材料的竞争力。成形性与塑性变形的容易程度有关,这种现象是由称为滑移和/或孪生的原子水平过程促进的。本质上,这些原子水平的机制是材料对外力的反应,这些机制使材料发生永久的宏观形状变化,称为塑性变形。塑性变形的困难会导致另一种不受欢迎的反应,即过早失效/断裂。对于镁合金,有限的成形性与各向异性塑性变形有关。这意味着正在成形的板材在某些方向上很容易塑性变形,而在另一些方向上则不容易。这种各向异性的原因在于引发某些形式的塑性变形所需的应力(或力)的强烈差异,而不是其他形式的塑性变形,这是这种合金系统的特征。这个项目的重点是通过计算和实验相结合的方法来确定合金元素,以减少这些变形模式之间的临界应力差,从而促进各向同性塑性变形,从而改善室温成形性能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

K. Sharvan Kumar其他文献

Indirect evaluation of the long-term oxidation properties of Al−21Ti−23Cr and Al−37Ti−12Cr coating materials for TiAl alloy
  • DOI:
    10.3365/met.mat.2008.12.713
  • 发表时间:
    2008-12-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    J. K. Lee;S. H. Kim;D. M. Wee;K. Sharvan Kumar;M. H. Oh
  • 通讯作者:
    M. H. Oh

K. Sharvan Kumar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('K. Sharvan Kumar', 18)}}的其他基金

Collaborative Research: Computational and Experimental Study of Alloying Effects on <c+a> slip in Mg
合作研究:合金化效应的计算和实验研究
  • 批准号:
    1709151
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Integrated Tip-Enabled Nanofabrication and Characterisation at Atomic Scale
集成尖端纳米加工和原子级表征
  • 批准号:
    LE240100015
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Atomic-Scale Engineering of Bioactive Organic Molecules on Surfaces
表面生物活性有机分子的原子尺度工程
  • 批准号:
    DP240100464
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
  • 批准号:
    24K01350
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
  • 批准号:
    2425965
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Atomic-scale surface and interface structural analysis of crystal growth process in molten metal
熔融金属中晶体生长过程的原子尺度表面和界面结构分析
  • 批准号:
    23H01850
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Chip-scale Atomic Systems for a Quantum Navigator
用于量子导航器的芯片级原子系统
  • 批准号:
    EP/X012689/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Towards deterministic atomic scale manufacturing of next-generation quantum devices
迈向下一代量子器件的确定性原子尺度制造
  • 批准号:
    EP/X021963/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
ElectroProtein - Atomic-scale electrodynamics of protein-liquid interfaces
ElectroProtein - 蛋白质-液体界面的原子级电动力学
  • 批准号:
    EP/X022471/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
Atomic-scale design of superlubricity of carbon nanostructures on metallic substrates
金属基底上碳纳米结构超润滑性的原子尺度设计
  • 批准号:
    EP/Y024923/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
Nanostencil Lithography for Atomic-Scale Fabrication Scale-Up
用于原子级制造放大的纳米模板光刻
  • 批准号:
    2879454
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了