Collaborative Research: Statistical Learning and Object Oriented Data Analysis

协作研究:统计学习和面向对象的数据分析

基本信息

  • 批准号:
    0606577
  • 负责人:
  • 金额:
    $ 25.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

This research is in the related areas of Statistical Learning and Object Oriented Data Analysis (OODA). There are major challenges in these areas that are addressed by a team of researchers, who bring different but complementary skill sets to explore. Statistical Learning is widely recognized as a very active area of interdisciplinary research, which lives between statistics, computer science, and optimization. With state-of-art optimization tools, this research offers a set of new approaches for statistical learning, including new penalties for regularization, further developments of large margin classifiers both theoretically and numerically, as well as nonparametric-based probability calibration for hard margin classifiers. In addition, new visualization and analytical tools for ``High Dimension-Low Sample Size'' (HDLSS) data are developed. Such development is extremely important since HDLSS has become a common feature of data encountered in many divergent fields such as medical imaging and micro-array analysis for gene expression but is outside of the domain of classical statistical multivariate analysis. OODA is a generalization of the recently very productive area of Functional Data Analysis (FDA). In FDA, curves are data points and variation in a family of curves is the focus of analysis. OODA extends this notion to populations where the data points are more complex objects, such as images, shape representations, and even tree-structured objects. The proposed research offers a set of new tools for FDA, including exponential family functional principal components analysis (PCA), robust functional PCA, curve discrimination, and forecasting and dynamic updating of time series of curves. Proposed research will also advance OODA for data on smooth manifolds and tree-structured objects.The main application area of the research is in health and medicine and civil infrastructure. The research is motivated by and will have beneficial impacts on cancer research, medical imaging, call center management, and network traffic modeling. However, the developed statistical methods will be useful in fields far beyond those motivating this research, such as demography/epidemiology, financial economics and spatial-temporal modeling. The team consists of a good mix of well established senior researchers and young junior researchers. Strong mentoring at several levels is an important component of this project. First, there is strong training of graduate students, in these exciting new research areas, with the goal of giving them the background, and skills needed to start their own research careers. Second, there is strong mentoring of the junior researchers, by the more experienced members of the research team. In addition to working closely together on research projects, the junior researchers will learn the skills of advising PhD students, through joint supervision together with the more senior members. The team continues to disseminate the research results quickly and broadly through collaborative work, academic presentations, and journal publications. Web pages are created to enable quick access to user-friendly and accessible software implementations of new methods as well as technical reports and relevant references.
这项研究是在统计学习和面向对象的数据分析(OODA)的相关领域。这些领域的重大挑战由一组研究人员解决,他们带来了不同但互补的技能来探索。统计学习被广泛认为是一个非常活跃的跨学科研究领域,它介于统计学、计算机科学和优化之间。利用最先进的优化工具,本研究为统计学习提供了一套新的方法,包括新的正则化惩罚,在理论上和数值上进一步发展大边缘分类器,以及硬边缘分类器的非参数概率校准。此外,开发了新的“高维低样本量”(HDLSS)数据可视化和分析工具。这种发展是极其重要的,因为HDLSS已经成为许多不同领域(如医学成像和基因表达的微阵列分析)中遇到的数据的共同特征,但超出了经典的统计多元分析领域。OODA是功能数据分析(FDA)最近非常富有成效的领域的概括。在FDA中,曲线是数据点,曲线族中的变化是分析的重点。OODA将这一概念扩展到数据点是更复杂对象的群体,比如图像、形状表示,甚至是树状结构的对象。该研究为FDA提供了一套新的工具,包括指数族功能主成分分析(PCA)、鲁棒功能主成分分析(robust functional PCA)、曲线判别、曲线时间序列预测和动态更新。拟议的研究还将推进面向对象数据分析(OODA),用于光滑流形和树状结构对象的数据。研究的主要应用领域是卫生医药和民用基础设施。这项研究将对癌症研究、医学成像、呼叫中心管理和网络流量建模产生有益的影响。然而,所开发的统计方法将在远远超出本研究的领域,如人口/流行病学、金融经济学和时空建模等领域发挥作用。这个团队由经验丰富的资深研究人员和年轻的初级研究人员组成。在几个层次上强有力的指导是这个项目的重要组成部分。首先,在这些令人兴奋的新研究领域,对研究生进行了强有力的培训,目的是为他们提供开始自己的研究生涯所需的背景和技能。第二,由研究团队中更有经验的成员对初级研究人员进行强有力的指导。除了在研究项目上紧密合作外,初级研究人员将通过与更资深的成员共同监督,学习指导博士生的技能。该团队继续通过合作工作、学术报告和期刊出版物迅速而广泛地传播研究成果。创建网页是为了能够快速访问新方法的用户友好和可访问的软件实现,以及技术报告和相关参考资料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Marron其他文献

James Marron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Marron', 18)}}的其他基金

Data Integration Via Analysis of Subspaces (DIVAS)
通过子空间分析 (DIVAS) 进行数据集成
  • 批准号:
    2113404
  • 财政年份:
    2021
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Standard Grant
BIGDATA: F: Statistical Approaches to Big Data Analytics
BIGDATA:F:大数据分析的统计方法
  • 批准号:
    1633074
  • 财政年份:
    2016
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Standard Grant
Collaborative Research: Tree Structured Object Oriented Data Analysis
协作研究:树结构面向对象数据分析
  • 批准号:
    0854908
  • 财政年份:
    2009
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Standard Grant
High Dimension - Low Sample Size Statistical Analysis
高维度-低样本量统计分析
  • 批准号:
    0308331
  • 财政年份:
    2003
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Continuing Grant
Populations of Complex Objects, Visualization and Smoothing
复杂对象的群体、可视化和平滑
  • 批准号:
    9971649
  • 财政年份:
    1999
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonparametric Curve Estimation
数学科学:非参数曲线估计
  • 批准号:
    9203135
  • 财政年份:
    1992
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Continuing Grant
U.S.-Belgium Cooperative Research: Bandwidth Selection and Construction of Confidence Bands in Nonparametric Regression
美国-比利时合作研究:非参数回归中的带宽选择和置信带构建
  • 批准号:
    9107498
  • 财政年份:
    1991
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247795
  • 财政年份:
    2023
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247794
  • 财政年份:
    2023
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
  • 批准号:
    2242084
  • 财政年份:
    2023
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
  • 批准号:
    2327625
  • 财政年份:
    2023
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308445
  • 财政年份:
    2023
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 25.08万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了