Sampled-Data and Discrete-Time Control of Infinite Dimensional Systems
无限维系统的采样数据和离散时间控制
基本信息
- 批准号:0606857
- 负责人:
- 金额:$ 10.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two types of control problems are considered where the information available for controller design is limited. In one type of problem, output data is available only at discrete times, so sampled-data control is used instead of continuous-time control. Projects include how to design sampled-data controllers for partial differential equations; an analysis of which systems can be stabilized by a simple sampled-data controller; how to modify continuous-time feedback controllers so that they are effective sampled-data controllers; an analysis of how the performance of a sampled-data controller compares to that of related continuous time controllers; and the design of sampled-data controllers which track an external reference signals, even when very little information about the plant is available. In these projects, the interest lies not only in what can be done with sampled-data control design, but also its limitations. Since a discrete time controller can operate with only limited frequency response, and infinite-dimensional systems often have high frequency effects which cannot be ignored, sampled-data and discrete-time control of infinite-dimensional systems is very delicate. In addition, population dynamics problems modeled by infinite-dimensional discrete-time systems, such as integro-difference equations, are considered. Most such problems in population ecology have highly uncertain data, and we will analyze how growth or decay is affected by the data uncertainties.The development of sampled-data control is motivated in part by advances in digital electronics, which has led increasingly to sampled-data design and implementation of control algorithms. Furthermore, in many practical applications output data from a system is often only available at discrete times rather than in continuous time, so it is of practical value to know how to deal with such data. The proposed research will address basic questions about the capabilities of sampled-data control design for infinite-dimensional systems. Conservation problems in population ecology typically have very uncertain data, and the growth or decay of an endangered or invasive species can be dramatically affected by this uncertainty. Infinite-dimensional models are used to model spatial spread of a population or in cases where the growth stages are continuously distributed. This research will develop new techniques, and use techniques from robust control theory, to analyze the effect of uncertain data on long-term population growth. These techniques will be available and accessible for use on similar population problems. Undergraduate and graduate researchers will be incorporated into this research program.
两种类型的控制问题被认为是控制器设计的信息是有限的。 在一类问题中,输出数据仅在离散时间可用,因此使用采样数据控制代替连续时间控制。 项目包括如何设计偏微分方程的采样数据控制器;分析哪些系统可以通过简单的采样数据控制器来稳定;如何修改连续时间反馈控制器,使其成为有效的采样数据控制器;分析采样数据控制器的性能如何与相关的连续时间控制器进行比较;以及采样数据控制器的设计,该控制器跟踪外部参考信号,即使在关于被控对象的信息非常少的情况下也是如此。 在这些项目中,感兴趣的不仅是采样数据控制设计可以做什么,而且它的局限性。 由于离散时间控制器只能在有限的频率响应下工作,而无穷维系统往往具有不可忽略的高频效应,因此无穷维系统的采样数据和离散时间控制非常微妙。 此外,考虑了由无穷维离散时间系统(如积分差分方程)建模的种群动力学问题。 种群生态学中的大多数此类问题具有高度不确定性的数据,我们将分析增长或衰减如何受到数据不确定性的影响。采样数据控制的发展部分是由数字电子学的进步推动的,这导致了越来越多的采样数据设计和控制算法的实现。 此外,在许多实际应用中,来自系统的输出数据通常仅在离散时间而不是在连续时间可用,因此知道如何处理此类数据具有实用价值。 拟议中的研究将解决有关无限维系统的采样数据控制设计的能力的基本问题。 种群生态学中的保护问题通常具有非常不确定的数据,这种不确定性会极大地影响濒危或入侵物种的生长或衰退。 无限维模型用于对种群的空间分布或生长阶段连续分布的情况进行建模。 这项研究将开发新的技术,并使用鲁棒控制理论的技术,来分析不确定数据对长期人口增长的影响。 这些技术将可用于解决类似的人口问题。 本科生和研究生研究人员将被纳入本研究计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Rebarber其他文献
Modeling and Analysis of a Density-Dependent Stochastic Integral Projection Model for a Disturbance Specialist Plant and Its Seed Bank
- DOI:
10.1007/s11538-014-9978-y - 发表时间:
2014-06-11 - 期刊:
- 影响因子:2.200
- 作者:
Eric Alan Eager;Richard Rebarber;Brigitte Tenhumberg - 通讯作者:
Brigitte Tenhumberg
Correction to: Analysis of a Length-Structured Density-Dependent Model for Fish
- DOI:
10.1007/s11538-021-00916-1 - 发表时间:
2021-06-17 - 期刊:
- 影响因子:2.200
- 作者:
Jason Callahan;Eric Eager;Richard Rebarber;Eva Strawbridge;Shenglan Yuan - 通讯作者:
Shenglan Yuan
Richard Rebarber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Rebarber', 18)}}的其他基金
Feedback Control Approaches to Uncertain Nonlinear Structured Population Models
不确定非线性结构化总体模型的反馈控制方法
- 批准号:
1412598 - 财政年份:2014
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
REU Site: Nebraska REU in Applied Math
REU 站点:内布拉斯加州 REU 应用数学
- 批准号:
1263132 - 财政年份:2013
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant
REU Site: Nebraska REU in Applied Math
REU 站点:内布拉斯加州 REU 应用数学
- 批准号:
1004766 - 财政年份:2010
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Sampled Data Stabilization and Tracking for Partial Differential Equations
偏微分方程的采样数据稳定和跟踪
- 批准号:
0206951 - 财政年份:2002
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences-Mathematical Control Theory of Coupled Systems of Partial Differential Equations 8/3/99-8/7/99
NSF/CBMS 数学科学区域会议-偏微分方程耦合系统的数学控制理论 8/3/99-8/7/99
- 批准号:
9813596 - 财政年份:1999
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Mathematical Sciences: "Robust and Sampled Data Control of Distributed Parameter Systems"
数学科学:“分布式参数系统的鲁棒采样数据控制”
- 批准号:
9623392 - 财政年份:1996
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Frequency Domain Techniques for Stabilization of Distributed Parameter Systems
数学科学:分布式参数系统稳定的频域技术
- 批准号:
9206986 - 财政年份:1992
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Data Mapping and Texturing in a Discrete Global Grid System
离散全球网格系统中的数据映射和纹理
- 批准号:
574803-2022 - 财政年份:2022
- 资助金额:
$ 10.6万 - 项目类别:
University Undergraduate Student Research Awards
Discrete and/or Longitudinal Data (small/big) analysis and The Behrens-Fisher problem
离散和/或纵向数据(小/大)分析和 Behrens-Fisher 问题
- 批准号:
RGPIN-2018-04558 - 财政年份:2022
- 资助金额:
$ 10.6万 - 项目类别:
Discovery Grants Program - Individual
Robust framework for cluster analysis of multivariate discrete data
多元离散数据聚类分析的稳健框架
- 批准号:
573564-2022 - 财政年份:2022
- 资助金额:
$ 10.6万 - 项目类别:
University Undergraduate Student Research Awards
Model-based clustering of high dimensional discrete data and compositional data
高维离散数据和组合数据的基于模型的聚类
- 批准号:
RGPIN-2021-03812 - 财政年份:2022
- 资助金额:
$ 10.6万 - 项目类别:
Discovery Grants Program - Individual
Model-based clustering of high dimensional discrete data and compositional data
高维离散数据和组合数据的基于模型的聚类
- 批准号:
RGPIN-2021-03812 - 财政年份:2021
- 资助金额:
$ 10.6万 - 项目类别:
Discovery Grants Program - Individual
Discrete and/or Longitudinal Data (small/big) analysis and The Behrens-Fisher problem
离散和/或纵向数据(小/大)分析和 Behrens-Fisher 问题
- 批准号:
RGPIN-2018-04558 - 财政年份:2021
- 资助金额:
$ 10.6万 - 项目类别:
Discovery Grants Program - Individual
Characterization of Multi-Scale Discrete Fracture Network Systems in Unconventional Reservoirs Using Dynamic Data
使用动态数据表征非常规油藏多尺度离散裂缝网络系统
- 批准号:
RGPIN-2017-05779 - 财政年份:2021
- 资助金额:
$ 10.6万 - 项目类别:
Discovery Grants Program - Individual
Characterization of Multi-Scale Discrete Fracture Network Systems in Unconventional Reservoirs Using Dynamic Data
使用动态数据表征非常规油藏多尺度离散裂缝网络系统
- 批准号:
RGPIN-2017-05779 - 财政年份:2020
- 资助金额:
$ 10.6万 - 项目类别:
Discovery Grants Program - Individual
Repro Sampling Method: A Transformative Artificial-Sample-Based Inferential Framework with Applications to Discrete Parameter, High-Dimensional Data, and Rare Events Inferences
再现采样方法:一种基于人工样本的变革性推理框架,应用于离散参数、高维数据和稀有事件推理
- 批准号:
2015373 - 财政年份:2020
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Discrete and/or Longitudinal Data (small/big) analysis and The Behrens-Fisher problem
离散和/或纵向数据(小/大)分析和 Behrens-Fisher 问题
- 批准号:
RGPIN-2018-04558 - 财政年份:2020
- 资助金额:
$ 10.6万 - 项目类别:
Discovery Grants Program - Individual