NIRT: Tuning the Electronic and Molecular Structures of Catalytic Active Sites with Oxide Nanoligands
NIRT:用氧化物纳米配体调整催化活性位点的电子和分子结构
基本信息
- 批准号:0609018
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractProposal Title: NIRT: Tuning the Electronic and Molecular Structures of Catalytic Active Sites with Oxide Nanoligand Proposal Number: CTS-0609018Principal Investigator: Israel E. WachsInstitution: Lehigh UniversityAnalysis (rationale for decision):This proposal was received in response to Nanoscale Science and Engineering initiative, NSF 05-610, category NIRT. Heterogeneous catalysts are solid substances that accelerate chemical reactions at the surface, whereby the nanoscale and chemical features of the surface affect the activity, selectivity, and longevity of the catalyst. Nanoscale engineering of the catalyst offers tremendous potential for understanding more deeply the nature of the catalytic active surface site, and offers the opportunity to improve catalyst performance in environmental, energy, petrochemical, pharmaceutical and food industries, and more recently in homeland security. This proposal specifically describes a four-year research and teaching plan focused on tailoring the electronic and molecular structures of oxide nanoligands and their resulting impact on the catalytic performance of molecularly engineered supported metal oxide catalytic active sites. This project will systematically examine the influence of the oxide substrate nanostructure in the critical 0.5-10 nm range for the catalytic active metal oxide-support interaction upon the resultant electronic structures, molecular structures and catalytic properties. A series of model supported catalysts will be molecularly engineered to allow for variation of the catalytic active sites and oxide nanoligands. The nanoligand dimension, electronic structure, molecular structure, composition (CeO2, TiO2, ZrO2, and their mixtures) and the catalytic active sites (acidic WOx, basic BaOx, redox VOx, and their mixtures) will be controlled to tune the catalytic activity/selectivity. These nano-supported catalysts will be synthesized in vivo within inert amorphous siliceous matrices to control the oxide nanoligand domain size and its distribution. These novel catalytic materials will be electronically, molecularly, and chemically characterized with the most advanced state-of-the-art molecular level in situ microscopic and spectroscopic techniques currently available, and under different reaction conditions, to determine their fundamental electronic/molecular structure-activity/selectivity relationships. These new insights will be employed to develop molecular level models that capture the influence of oxide nanoligand electronic and molecular characteristics on chemical properties of catalytic active sites anchored on such nanoligand substrates. The theoretical models will subsequently be used to guide the molecular design of advanced supported catalytic materials by tuning the electronic and molecular structures of catalytic active sites with the oxide nanoligands for several challenging catalytic applications of current industrial interest. This fundamental information will allow the establishment of molecular level relationships between oxide nanoligand domain size and supported catalytic active site electronic and molecular structures for a range of important catalytic reactions. These molecular level relationships will lead to the development of new theoretical models for nano and conventional supported catalysts, as well as non-catalytic materials applications, of such multicomponent designed materials. The new insights will assist in the molecular design of 'next generation' supported catalysts where the oxide support nanoligand domain size is a critical factor in tailoring physical and chemical properties of supported catalytic active sites. The educational and outreach programs include undergraduate and graduate student training, high school teacher training, an annual site-rotating workshop, and state-of-the-art microscopy and spectroscopy schools. An industrial partner, BP, has agreed to pursue commercialization of promising advanced catalytic materials that will be discovered in the course of this research program.
摘要提案标题: NIRT:用氧化物纳米配体调节催化活性位点的电子和分子结构提案编号:CTS-0609018主要研究者: 以色列E. WachsInstitution: 利哈伊大学分析(决策依据):该提案是响应纳米科学与工程倡议,NSF 05-610,类别NIRT。非均相催化剂是加速表面化学反应的固体物质,由此表面的纳米级和化学特征影响催化剂的活性、选择性和寿命。催化剂的纳米级工程为更深入地了解催化活性表面位点的性质提供了巨大的潜力,并为改善环境,能源,石化,制药和食品工业以及最近的国土安全中的催化剂性能提供了机会。该提案具体描述了一个为期四年的研究和教学计划,重点是定制氧化物纳米配体的电子和分子结构及其对分子工程支持的金属氧化物催化活性位点的催化性能的影响。 该项目将系统地研究在催化活性金属氧化物-载体相互作用的临界0.5-10 nm范围内的氧化物基底纳米结构对所得电子结构、分子结构和催化性能的影响。一系列模型负载催化剂将分子工程,以允许催化活性位点和氧化物纳米配体的变化。将控制纳米配体尺寸、电子结构、分子结构、组成(CeO 2、TiO 2、ZrO 2及其混合物)和催化活性位点(酸性WOx、碱性BaOx、氧化还原VOx及其混合物)以调节催化活性/选择性。这些纳米负载型催化剂将在惰性无定形硅质基质内体内合成,以控制氧化物纳米配体域的大小及其分布。这些新的催化材料将电子,分子和化学特征与最先进的国家的最先进的分子水平原位显微镜和光谱技术,目前可用的,并在不同的反应条件下,以确定其基本的电子/分子结构活性/选择性关系。这些新的见解将被用来开发分子水平的模型,捕捉氧化物纳米配体的电子和分子特性的化学性质的催化活性位点锚定在这样的纳米配体基板的影响。理论模型随后将用于指导先进的支持催化材料的分子设计,通过调整催化活性位点的电子和分子结构与氧化物纳米配体的几个具有挑战性的催化应用当前的工业利益。 这一基本信息将允许氧化物纳米配体域的大小和支持的催化活性位点的电子和分子结构的一系列重要的催化反应之间的分子水平的关系的建立。这些分子水平的关系将导致新的理论模型的发展,纳米和传统的负载型催化剂,以及非催化材料的应用,这样的多组分设计的材料。新的见解将有助于“下一代”负载型催化剂的分子设计,其中氧化物载体纳米配体域的大小是定制负载型催化活性位点的物理和化学性质的关键因素。教育和推广计划包括本科生和研究生培训,高中教师培训,年度现场旋转研讨会,以及最先进的显微镜和光谱学学校。 工业合作伙伴BP已同意将在该研究计划过程中发现的有前途的先进催化材料商业化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Israel Wachs其他文献
Israel Wachs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Israel Wachs', 18)}}的其他基金
Molecular Structure-Activity/Selectivity of Ethane Oxidative Dehydrogenation to Ethylene by MoVNbTe Mixed Oxide M1 Phase Catalysts
MoVNbTe混合氧化物M1相催化剂乙烷氧化脱氢制乙烯的分子结构-活性/选择性
- 批准号:
2221714 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Molecular Design of Solid Acid Catalysts for Upgrading Shale Gas Ethylene to Butenes
页岩气乙烯升级为丁烯的固体酸催化剂的分子设计
- 批准号:
2102555 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
GOALI: Promotion Mechanisms of Supported Ag/Al2O3 Catalysts for Selective Ethylene Epoxidation
目标:负载型Ag/Al2O3催化剂选择性乙烯环氧化的促进机制
- 批准号:
1804104 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
MRI: Acquisition of an Advanced Integrated Environmental X-ray Photoelectron Spectroscopy/Optical Spectroscopy Instrument for Simultaneous Surface, Bulk and Gas/Liquid Phase
MRI:购置先进的集成环境 X 射线光电子能谱/光学能谱仪器,可同时进行表面、体相和气/液相分析
- 批准号:
1726841 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Support for U.S. Participants at the 16th International Congress on Catalysis Location: Beijing, China Date: July 3-8, 2016
对第十六届国际催化大会美国与会者的支持地点:中国北京日期:2016 年 7 月 3-8 日
- 批准号:
1602787 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Conversion of Bioethanol to Butadiene for Manufacture of Green Tires
将生物乙醇转化为丁二烯用于制造绿色轮胎
- 批准号:
1605805 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
SusChEM: Rational Design of High Temperature Water-Gas Shift Catalysts with Non-Toxic Earth-Abundant Elements
SusChEM:采用地球丰富的无毒元素的高温水煤气变换催化剂的合理设计
- 批准号:
1511689 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
SusChEM: Molecular Level Foundation for Olefin Metathesis by Heterogeneous Supported WO3/SiO2 Catalysts
SusChEM:多相负载 WO3/SiO2 催化剂进行烯烃复分解的分子水平基础
- 批准号:
1301262 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Operando Molecular Spectroscopy during Catalytic Biomass Pyrolysis
催化生物质热解过程中的操作分子光谱
- 批准号:
1236716 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Support for U.S. Participants at the 15th International Congress on Catalysis (July 1-6, 2012 / Munich, Germany)
为第 15 届国际催化大会的美国与会者提供支持(2012 年 7 月 1-6 日/德国慕尼黑)
- 批准号:
1228024 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Electronic phase tuning in organic two-dimensional hole-gas system and organic quantum electronics
有机二维空穴气体系统中的电子相位调谐和有机量子电子学
- 批准号:
22H04959 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (S)
Strain-tuning electronic structure and quantum many-body interactions
应变调节电子结构和量子多体相互作用
- 批准号:
EP/T02108X/1 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grant
Tuning electronic and optical properties in twisted 2D semiconductors
调整扭曲二维半导体的电子和光学特性
- 批准号:
DP200101345 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Projects
Precise tuning of electronic state of IrO2 by tailor-made conjugated polymer substrate for water electrolysis
通过用于水电解的定制共轭聚合物基底精确调节 IrO2 的电子态
- 批准号:
19K15674 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tuning of the electronic state by anisotropic pressure for thin-film of molecular superconductors
通过各向异性压力调节分子超导体薄膜的电子态
- 批准号:
19K14668 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tuning the Electronic and Topological Properties of Twisted van der Waals Heterostructures
调整扭曲范德华异质结构的电子和拓扑特性
- 批准号:
1809802 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Tuning the electronic properties of SrTiO3 with ionic liquid gating
利用离子液体门控调节 SrTiO3 的电子特性
- 批准号:
2115316 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Studentship
Tuning of electronic ground states of 3D nanoporous graphene by nitrogen, phosphorous, boron doping
通过氮、磷、硼掺杂调节 3D 纳米多孔石墨烯的电子基态
- 批准号:
17K14074 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Concerted tuning of electronic state and electron transport ability of metal complex wires
金属复合线电子态和电子传输能力的协同调节
- 批准号:
16K17889 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Detailed optical spectroscopy of transition metal compounds: discovering and tuning electronic structures and optical properties
过渡金属化合物的详细光谱:发现和调整电子结构和光学性质
- 批准号:
122103-2012 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual