Molecular Structure-Activity/Selectivity of Ethane Oxidative Dehydrogenation to Ethylene by MoVNbTe Mixed Oxide M1 Phase Catalysts
MoVNbTe混合氧化物M1相催化剂乙烷氧化脱氢制乙烯的分子结构-活性/选择性
基本信息
- 批准号:2221714
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Ethane (a hydrocarbon component of natural gas) is the chief feedstock chemical for the production of ethylene – a highly desirable feedstock used in numerous industries, most notably the manufacture of polyethylene and other plastics. Currently, ethylene is produced through the well-established, but energy-intensive endothermic process of steam reforming. The project focuses on a more energy-efficient catalytic process known as oxidative dehydrogenation (ODH), an exothermic reaction that would require approximately 80% lower energy consumption, reduce CO2 emissions, and lower ethylene production costs. Achieving those goals (and beyond), however, requires improvements to the current state-of-the-art catalyst. The project combines spectroscopy, kinetic analysis, and theoretical methodologies that will provide new insights about ethane ODH, thus pointing the way towards either improved catalyst performance or identification of better performing alternatives. The research findings will be integrated into technical courses at Lehigh, production of online outreach videos, outreach activities to local schools, and work with the Lehigh Valley DaVinci Science Center.The unsupported MoVNbTe mixed oxide M1 phase catalyst is the most efficient catalyst known for ethane ODH, but many aspects of this catalyst system still need to be resolved. The project is built on the hypothesis (supported by the investigator’s prior research) that the catalytically active sites are the surface metal oxide sites (both on the proposed external amorphous overlayer surface and on the internal channel walls of the M1 phase) and not the metal oxide sites of the crystalline M1 phase commonly assumed in the literature. Preliminary studies reveal the somewhat static nature of the M1 bulk phase and the highly dynamic nature of the surface phase during ethane ODH. The almost complete absence of reported surface information about the M1 phase catalyst during ethane ODH has prevented development of fundamental understanding of this catalytic system. The complex nature of the M1 phase necessitates application of multiple advanced research experiments under ethane ODH reaction conditions to understand this catalyst system, namely 1) in situ and operando spectroscopy studies (Raman, IR, NAP-XPS, HS-LEIS, XANES/EXAFS, E-TEM) to determine the molecular level behavior of the crystalline and surface metal oxide sites, and 2) transient kinetic studies (Steady State Isotopic Transient Kinetic Analysis (SSITKA) and Modulation Excitation Spectroscopy (MES)) to address the redox kinetics of each cation and source of participating oxygen (i.e., (gas phase O2 (L-H) vs. lattice O* (MvK)). Molecular level DFT calculations and Microkinetic Modeling will complement the experimental findings to provide additional insights into structure-activity relationships. The objectives are to determine the dynamics of the surface cations present on the external surface and internal pore walls: (i) surface composition, (ii) oxidation states, (iii) redox kinetics (steady state, reduction with ethane and re-oxidation with O2), and (iv) location of catalytically active site(s) (external surface or internal pores). The new insights will lead to realistic structure-activity catalyst models of this important, complex catalyst system that will guide the rational design of advanced M1-phase mixed oxide catalysts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
乙烷(天然气的一种碳氢化合物成分)是生产乙烯的主要原料,乙烯是一种非常理想的原料,用于许多工业,尤其是聚乙烯和其他塑料的制造。目前,乙烯的生产是通过完善的,但能源密集的吸热过程的蒸汽重整。该项目侧重于一种更节能的催化过程,称为氧化脱氢(ODH),这是一种放热反应,可以降低约80%的能耗,减少二氧化碳排放,降低乙烯生产成本。然而,实现这些目标(以及超越目标)需要对当前最先进的催化剂进行改进。该项目结合了光谱学、动力学分析和理论方法,将为乙烷ODH提供新的见解,从而为提高催化剂性能或确定性能更好的替代品指明方向。研究结果将被整合到利哈伊的技术课程中,制作在线推广视频,向当地学校推广活动,并与利哈伊谷达芬奇科学中心合作。无负载的MoVNbTe混合氧化物M1相催化剂是已知乙烷ODH最有效的催化剂,但该催化剂体系的许多方面仍有待解决。该项目建立在假设(由研究者先前的研究支持)的基础上,即催化活性位点是表面金属氧化物位点(在提议的外部非晶覆盖层表面和M1相的内部通道壁上),而不是文献中通常假设的结晶M1相的金属氧化物位点。初步研究揭示了乙烷ODH过程中M1体相的静态性质和表面相的高度动态性质。在乙烷ODH过程中,几乎完全没有关于M1相催化剂表面信息的报道,这阻碍了对该催化体系的基本理解的发展。M1相的复杂性质需要在乙烷ODH反应条件下应用多个先进的研究实验来了解该催化剂体系,即1)原位和操作光谱研究(拉曼、红外、napp - xps、HS-LEIS、XANES/EXAFS、E-TEM),以确定晶体和表面金属氧化物位点的分子水平行为;2)瞬态动力学研究(稳态同位素瞬态动力学分析(SSITKA)和调制激发光谱(MES)),以解决每个阳离子的氧化还原动力学和参与氧的来源(即(气相O2 (L-H) vs.晶格O* (MvK))。分子水平的DFT计算和微动力学建模将补充实验结果,为结构-活性关系提供额外的见解。目的是确定存在于外表面和内孔壁上的表面阳离子的动力学:(i)表面组成,(ii)氧化状态,(iii)氧化还原动力学(稳态,乙烷还原和O2再氧化),以及(iv)催化活性位点(s)的位置(外表面或内孔)。这些新发现将为这一重要而复杂的催化剂体系建立切合实际的结构-活性催化剂模型,从而指导先进的m1相混合氧化物催化剂的合理设计。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Israel Wachs其他文献
Israel Wachs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Israel Wachs', 18)}}的其他基金
Molecular Design of Solid Acid Catalysts for Upgrading Shale Gas Ethylene to Butenes
页岩气乙烯升级为丁烯的固体酸催化剂的分子设计
- 批准号:
2102555 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
GOALI: Promotion Mechanisms of Supported Ag/Al2O3 Catalysts for Selective Ethylene Epoxidation
目标:负载型Ag/Al2O3催化剂选择性乙烯环氧化的促进机制
- 批准号:
1804104 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
MRI: Acquisition of an Advanced Integrated Environmental X-ray Photoelectron Spectroscopy/Optical Spectroscopy Instrument for Simultaneous Surface, Bulk and Gas/Liquid Phase
MRI:购置先进的集成环境 X 射线光电子能谱/光学能谱仪器,可同时进行表面、体相和气/液相分析
- 批准号:
1726841 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Support for U.S. Participants at the 16th International Congress on Catalysis Location: Beijing, China Date: July 3-8, 2016
对第十六届国际催化大会美国与会者的支持地点:中国北京日期:2016 年 7 月 3-8 日
- 批准号:
1602787 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Conversion of Bioethanol to Butadiene for Manufacture of Green Tires
将生物乙醇转化为丁二烯用于制造绿色轮胎
- 批准号:
1605805 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SusChEM: Rational Design of High Temperature Water-Gas Shift Catalysts with Non-Toxic Earth-Abundant Elements
SusChEM:采用地球丰富的无毒元素的高温水煤气变换催化剂的合理设计
- 批准号:
1511689 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SusChEM: Molecular Level Foundation for Olefin Metathesis by Heterogeneous Supported WO3/SiO2 Catalysts
SusChEM:多相负载 WO3/SiO2 催化剂进行烯烃复分解的分子水平基础
- 批准号:
1301262 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Operando Molecular Spectroscopy during Catalytic Biomass Pyrolysis
催化生物质热解过程中的操作分子光谱
- 批准号:
1236716 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Support for U.S. Participants at the 15th International Congress on Catalysis (July 1-6, 2012 / Munich, Germany)
为第 15 届国际催化大会的美国与会者提供支持(2012 年 7 月 1-6 日/德国慕尼黑)
- 批准号:
1228024 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Fundamentals of Natural Gas Conversion to Fuels and Chemicals over Molybdenum Nanostructures
合作研究:通过钼纳米结构将天然气转化为燃料和化学品的基础知识
- 批准号:
1134012 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Elucidation of molecular shield functions based on LEA peptide structure-activity relationships
基于LEA肽构效关系阐明分子屏蔽功能
- 批准号:
22K04844 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
In search of a treatment for Alzheimer’s Disease: Correlating molecular structure of novel unnatural amino acids to arginase inhibitory activity
寻找阿尔茨海默病的治疗方法:新型非天然氨基酸的分子结构与精氨酸酶抑制活性的关联
- 批准号:
466560 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Studentship Programs
Synthetic study and structure-activity relationship of the broad-spectrum antibiotic amycolamicn, a hybrid molecular architecture
混合分子结构广谱抗生素阿霉素的合成研究及其构效关系
- 批准号:
21K20566 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Collaborative Research: Correlating Molecular Structure and Activity in Boron-containing ODH Catalysts
合作研究:含硼 ODH 催化剂的分子结构和活性的关联
- 批准号:
1916809 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
ApoL1 and its kidney disease associated variants: ion permease activity, molecular structure, and podocyte injury.
ApoL1 及其肾脏疾病相关变异:离子通透酶活性、分子结构和足细胞损伤。
- 批准号:
9896822 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
ApoL1 and its kidney disease associated variants: ion permease activity, molecular structure, and podocyte injury.
ApoL1 及其肾脏疾病相关变异:离子通透酶活性、分子结构和足细胞损伤。
- 批准号:
10371206 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Collaborative Research: Correlating Molecular Structure and Activity in Boron-containing ODH Catalysts
合作研究:含硼 ODH 催化剂的分子结构和活性的关联
- 批准号:
1916775 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Computation of molecular interaction field using quantum chemistry calculation and probe molecules and its application to structure-activity relationship
利用量子化学计算和探针分子计算分子相互作用场及其在构效关系中的应用
- 批准号:
18K14887 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Visualization of food hydration structure and analysis of molecular mobility to elucidate the hydration state implied by water activity
食物水合结构的可视化和分子迁移率分析,以阐明水分活度所暗示的水合状态
- 批准号:
16H04928 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Molecular mechanism of the tissue-specific expression of the hydrolases which enzymes related to structure activity relationship of pro-drugs
与前药结构活性关系相关的水解酶组织特异性表达的分子机制
- 批准号:
24590206 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




