Novel Approximation Techniques for Maxwell's Equations
麦克斯韦方程组的新颖逼近技术
基本信息
- 批准号:0609544
- 负责人:
- 金额:$ 19.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-15 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main objective of this research is the development and study of a new finite element negative norm least-squares approach to problems involving Maxwell's equations in electromagnetics. Computational electromagnetics is a critical ingredient in development of new technologies with applications in, for example, biomedical engineering, microwave engineering, remote and subsurface sensing, antenna analysis and stealth technology. Attention will be focused on a new computational approach based on very weak formulations of various problems. Investigation of the application of this new computational approach to several problems in electromagnetics including eddy current problems, time-harmonic problems and the so-called time domain problem will be carried out. In addition, the Maxwell-Berenger PML model for the near-field approximation of the scattering problem will be investigated from the new point of view. A PML coordinate-stretching approach for treating exterior elliptic and hyperbolic problems will also be investigated.Computational electromagnetics plays an important role in many important technological areas including device design, nondestructive testing and imaging. Device applications involve, for example, the design of antennas and waveguides, microcircuits and transducers. Electromagnetic imaging is being employed in geophysical applications to better understand and produce existing oil reservoirs and in medical applications involving tumor detection. This research project uses advanced analytical and numerical techniques to improve the reliability and robustness of large scale electromagnetic computations. More accurate and reliable computations in medical applications might enable the differentiation between tumor and non-tumor cells or in radar applications might enable one to distinquish between friend or foe.
本研究的主要目的是开发和研究一种新的有限元负范数最小二乘方法,涉及电磁学中的麦克斯韦方程组的问题。计算电磁学是开发新技术的一个关键因素,其应用领域包括生物医学工程、微波工程、遥感和地下传感、天线分析和隐形技术。 注意力将集中在一个新的计算方法的基础上非常弱的配方的各种问题。 将对这种新的计算方法在电磁学中的几个问题,包括涡流问题,时间谐波问题和所谓的时域问题的应用进行调查。 此外,从新的角度研究了散射问题的近场近似的Maxwell-Berenger PML模型。 计算电磁学在器件设计、无损检测和成像等许多重要技术领域中发挥着重要作用。 器件应用涉及例如天线和波导、微电路和换能器的设计。电磁成像正被用于地球物理应用中,以更好地了解和生产现有的油藏,并在涉及肿瘤检测的医疗应用。该研究项目使用先进的分析和数值技术来提高大规模电磁计算的可靠性和鲁棒性。 在医学应用中,更精确和可靠的计算可能使肿瘤和非肿瘤细胞之间的区别成为可能,或者在雷达应用中,可能使人们能够区分朋友或敌人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Bramble其他文献
James Bramble的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Bramble', 18)}}的其他基金
A New Approximation Technique for Maxwell's Equations
麦克斯韦方程组的一种新逼近技术
- 批准号:
0311902 - 财政年份:2003
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
Construction of Accurate, Robust and Efficient Numerical Techniques for Partial Differential Equations
构建准确、稳健、高效的偏微分方程数值技术
- 批准号:
9973328 - 财政年份:1999
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
Negative Norm Least-Squares Finite Element Methods for Electromagnetics
电磁学负范数最小二乘有限元方法
- 批准号:
9805590 - 财政年份:1998
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
Mathematical Sciences: Construction of Accurate, Robust and Efficient Numerical Techniques for Partial Differential Equations
数学科学:偏微分方程的准确、稳健和高效的数值技术的构建
- 批准号:
9626567 - 财政年份:1996
- 资助金额:
$ 19.94万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algorithms and Numerical Analysis forPartial Differential Equations
数学科学:偏微分方程的算法和数值分析
- 批准号:
9007185 - 财政年份:1990
- 资助金额:
$ 19.94万 - 项目类别:
Continuing grant
Mathematical Sciences: Algorithms and Numerical Analysis forDifferential Equations
数学科学:微分方程的算法和数值分析
- 批准号:
8703534 - 财政年份:1987
- 资助金额:
$ 19.94万 - 项目类别:
Continuing grant
Mathematical Sciences: Numerical Analysis-Differential Equations
数学科学:数值分析-微分方程
- 批准号:
8405352 - 财政年份:1984
- 资助金额:
$ 19.94万 - 项目类别:
Continuing Grant
Numerical Analysis and Differential Equations
数值分析和微分方程
- 批准号:
7827003 - 财政年份:1979
- 资助金额:
$ 19.94万 - 项目类别:
Continuing grant
Numerical Analysis and Differential Equations
数值分析和微分方程
- 批准号:
7607236 - 财政年份:1976
- 资助金额:
$ 19.94万 - 项目类别:
Continuing grant
Numerical Analysis and Differential Equations
数值分析和微分方程
- 批准号:
7308471 - 财政年份:1973
- 资助金额:
$ 19.94万 - 项目类别:
Continuing grant
相似海外基金
Approximation and coding theory techniques for distributed machine learning
分布式机器学习的近似和编码理论技术
- 批准号:
559010-2021 - 财政年份:2022
- 资助金额:
$ 19.94万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Approximation and coding theory techniques for distributed machine learning
分布式机器学习的近似和编码理论技术
- 批准号:
559010-2021 - 财政年份:2021
- 资助金额:
$ 19.94万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Improved Mathematical Programming Techniques for Approximation Algorithms
改进近似算法的数学编程技术
- 批准号:
RGPIN-2015-06496 - 财政年份:2019
- 资助金额:
$ 19.94万 - 项目类别:
Discovery Grants Program - Individual
Improved Mathematical Programming Techniques for Approximation Algorithms
改进近似算法的数学编程技术
- 批准号:
RGPIN-2015-06496 - 财政年份:2018
- 资助金额:
$ 19.94万 - 项目类别:
Discovery Grants Program - Individual
CAREER: New Mathematical Programming Techniques in Approximation and Online Algorithms
职业:近似和在线算法中的新数学编程技术
- 批准号:
1750127 - 财政年份:2018
- 资助金额:
$ 19.94万 - 项目类别:
Continuing Grant
Improved Mathematical Programming Techniques for Approximation Algorithms
改进近似算法的数学编程技术
- 批准号:
RGPIN-2015-06496 - 财政年份:2017
- 资助金额:
$ 19.94万 - 项目类别:
Discovery Grants Program - Individual
Development of Integrated Approximation and Compression Techniques for Next Generation Streaming Data Mining
下一代流数据挖掘的集成逼近和压缩技术的开发
- 批准号:
17K00301 - 财政年份:2017
- 资助金额:
$ 19.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AF: Small: Topological Approximation Techniques in Computational Geometry
AF:小:计算几何中的拓扑近似技术
- 批准号:
1718994 - 财政年份:2017
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
Improved Mathematical Programming Techniques for Approximation Algorithms
改进近似算法的数学编程技术
- 批准号:
RGPIN-2015-06496 - 财政年份:2016
- 资助金额:
$ 19.94万 - 项目类别:
Discovery Grants Program - Individual
Flexible and Effective Techniques for the Design of Approximation Algorithms
灵活有效的逼近算法设计技术
- 批准号:
288340-2012 - 财政年份:2016
- 资助金额:
$ 19.94万 - 项目类别:
Discovery Grants Program - Individual