RUI: Analysis and Numerical Solutions for Stochastic Stokes Equations
RUI:随机斯托克斯方程的分析和数值解
基本信息
- 批准号:0609918
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI and colleagues study the numerical simulation of an incompressible The PI and colleagues study the numerical simulation of an incompressible viscous fluid, obeying the Stokes equations. The research will study the effect of an additional stochastic forcing term, random viscosity and random boundary values . Methods of constructing families of solutions will be used and compared. The PI is interested in the relationship between uncertainty in the input (forcing term) to the uncertainty in the output (solution values used to estimate expected values.) The research has three major components: 1. Monte Carlo methods enhanced with sensitivity derivatives, for the stochastic Stokes equations with random input parameters; 2. finite element approximation of stochastic Stokes equations with white noise forcing terms; 3. the stochastic spectral finite element method with polynomial chaos spaces, with random coefficients and boundary conditions. Computer calculations can seem deceptively precise. But scientists have discovered that there is a significant amount of uncertainty in all physical systems; not just when something is measured, but even when an attempt is made to describe how the system changes. No computer calculation can possibly consider every slight variation in the measurements and dynamics of a system under study. And yet it is known that, at least in some cases, small amounts of uncertainty can lead to significant, and even disastrous, errors in the computed results. The proposed research is one example of the effort to understand, quantify and control the effect of uncertainties, in this case, for a standard physical computation involving the flow of a fluid. An important bonus of this research is the involvement of a group of largely minority students, who will receive the support, guidance and training necessary to begin scientific careers.
PI及其同事研究不可压缩粘性流体的数值模拟,遵守斯托克斯方程。研究将研究附加随机强迫项、随机粘性和随机边界值的影响。构建家庭的解决方案的方法将被使用和比较。 PI感兴趣的是输入(强迫项)的不确定性与输出(用于估计预期值的解值)的不确定性之间的关系。该研究有三个主要组成部分: 1.蒙特卡罗方法增强了灵敏度导数, 对于具有随机输入参数的随机Stokes方程; 2.随机有限元逼近 具有白色噪声强迫项的斯托克斯方程 3.随机谱有限元法 多项式混沌空间,随机系数, 边界条件 计算机计算可能看起来精确得令人难以置信。 但科学家们发现,所有的物理系统都存在大量的不确定性,不仅是在测量时,甚至在试图描述系统如何变化时也是如此。任何计算机计算都不可能考虑所研究系统的测量和动力学的每一个微小变化。 然而,众所周知,至少在某些情况下,少量的不确定性可能导致计算结果中的重大甚至灾难性的错误。 拟议的研究是努力理解,量化和控制不确定性的影响的一个例子,在这种情况下,对于涉及流体流动的标准物理计算。这项研究的一个重要好处是一组主要是少数民族学生的参与,他们将获得开始科学生涯所需的支持、指导和培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roselyn Williams其他文献
Roselyn Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roselyn Williams', 18)}}的其他基金
Research Experiences in the Mathematical Sciences for Undergraduate Faculty (REMS-UF)
本科教师数学科学研究经历 (REMS-UF)
- 批准号:
0901523 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
The Florida A&M University Inter-Disciplinary Research Experience for Undergraduates
佛罗里达A
- 批准号:
0354072 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
The Florida A&M University Computer Science, Engineering, Engineering Technology and Mathematics Scholarship Program
佛罗里达A
- 批准号:
0221402 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
REU Site: The Florida A&M University Inter-Disciplinary Research Experience for Undergraduates
REU 站点:佛罗里达 A
- 批准号:
0097812 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
Computer Science, Engineering, and Mathematics Scholarships Program
计算机科学、工程和数学奖学金计划
- 批准号:
9987206 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Models in the Natural and Social Sciences
自然科学和社会科学中的数学模型
- 批准号:
9552944 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Comprehensive numerical analysis of ICRF heating with fast-ion-driven instabilities in toroidal plasmas
对环形等离子体中快速离子驱动不稳定性的 ICRF 加热进行全面数值分析
- 批准号:
24K17032 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
- 批准号:
DP220100937 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
Reconsideration of a 3-D sintering model by numerical analysis of shape and alignment parameters of metal powders during the sintering process
通过对烧结过程中金属粉末的形状和排列参数进行数值分析来重新考虑 3D 烧结模型
- 批准号:
23K04439 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325195 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Real-Time & Generalizable Flood Simulation Emulator using Numerical Analysis and Machine Learning
即时的
- 批准号:
23KJ1685 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Innovative Numerical Theory for Structural Seismic Response Analysis Using Principal Stress Coordinates
使用主应力坐标进行结构地震响应分析的创新数值理论
- 批准号:
23H00199 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308679 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




