Petrov-Galerkin Enrichment Methods for Porous Media

多孔介质的 Petrov-Galerkin 富集方法

基本信息

项目摘要

This proposal aims to develop novel numerical methods in porous media.Initially the Darcy model is examined under the framework of aPetrov-Galerkin enriched method (PGEM). The method consists inenriching differently trial and test funtions. The test functionenrichments resembles residual-free bubbles, with zero conditionfor the normal compoenent of the velocity. This allows forstatic condensation and computation of the enrichment for thetrial function. It turns out that this enrichment is a variationof the Raviart-Thomas. This is eliminated at the element level,so that the computational formulation of the current method isin fact that of the original spaces span by continuous piecewise linearsand piecewise constants. A detailed study for the P1/P0 elementand other higher order elements will be pursued along with theirerror analyses.The methods developed in this work are key to simulate intricatelarge heterogeneuous domains which is a major challenge in porousmedia field, as in oil reservoir, contaminant transport and waterresource problems, just to cite a few of them. The methods proposed hereincontribute to decrease large scale computations since the matricesare no longer semi-definite. The methods are also competitive sincethe support of the unknows is equal to the original Galerkin method.In summary, we are pursuing more efficient methods that can overcome complex mixed methods which has dominated the field over many decades.The problems we are addressing have impact on environmental, energyand are of use to DOE.
首先,在一种Petrov-Galerkin富集法(PGEM)的框架下研究了Darcy模型。该方法包括丰富不同的试验功能和测试功能。测试函数富集度类似于无残留物的气泡,速度的正常成分为零。这允许对三元函数进行静态凝聚和浓缩计算。事实证明,这种浓缩是拉维亚特-托马斯的一种变体。在单元水平上消除了这一点,从而使当前方法的计算公式实际上是由连续分段线性化和分段常数组成的原始空间跨度的计算公式。对P1/P0单元和其他高阶单元进行了详细的研究,并进行了误差分析。本文提出的方法是模拟复杂的非均质区域的关键,这是多孔介质领域的主要挑战,例如在油藏、污染物传输和水资源问题中,仅举几个例子。由于矩阵不再是半定的,本文提出的方法有助于减少大规模的计算量。这些方法也是有竞争力的,因为未知因素的支持等同于原始的Galerkin方法。总之,我们正在寻求更有效的方法,可以克服统治该领域数十年的复杂混合方法。我们正在解决的问题对环境、能源和能源部有用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leopoldo Franca其他文献

Leopoldo Franca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leopoldo Franca', 18)}}的其他基金

US-Germany Cooperative Research: Numerical Treatment of Multiscale Phenomena
美德合作研究:多尺度现象的数值处理
  • 批准号:
    0339107
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Biot-Stokes耦合问题的弱Galerkin有限元方法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
间断Galerkin有限元方法及其自适应并行计算
  • 批准号:
    12302375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具有退化或间断通量的双曲方程的间断Galerkin方法误差估计
  • 批准号:
    12301513
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
奇异摄动积分方程和积分微分方程的hp型Galerkin方法
  • 批准号:
    12301468
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
若干变系数问题的高效谱Galerkin方法研究
  • 批准号:
    12371368
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
具有非完美匹配界面波动方程的间断Galerkin格式
  • 批准号:
    12361088
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
二维非线性薛定谔型方程自适应非结构网格局部间断Petrov-Galerkin方法研究
  • 批准号:
    12361076
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
多孔弹性介质中分数阶超声波模型的交点间断Galerkin方法
  • 批准号:
    12371404
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
Navier-Stokes 方程的高效稳定无单元 Galerkin法研究
  • 批准号:
    CSTB2022NSCQ-LZX0016
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
电磁场散射问题PML逼近方程弱Galerkin有限元方法及快速算法研究
  • 批准号:
    2022JJ30271
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
  • 批准号:
    2309591
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2404521
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
  • 批准号:
    2309670
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
  • 批准号:
    2309590
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Systems with Compact Stencils
用于具有紧凑模板的对流主导系统的龙格-库塔不连续伽辽金方法
  • 批准号:
    2208391
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Analysis of hybridized discontinuous Galerkin methods for the miscible displacement problem
混相驱替问题的混合间断伽辽金法分析
  • 批准号:
    568008-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
  • 批准号:
    2208231
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Computational Relativistic Astrophysics via Space-Time Discontinuous Galerkin Finite Element Methods
基于时空不连续伽辽金有限元方法的计算相对论天体物理学
  • 批准号:
    RGPIN-2017-04581
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
  • 批准号:
    2310340
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了