Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models

用于相场流体模型的高效可杂交不连续伽辽金方法

基本信息

  • 批准号:
    2310340
  • 负责人:
  • 金额:
    $ 15.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-12-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Multiphase flow is ubiquitous in natural phenomena and industrial applications. Common examples include wave-breaking and sloshing, contaminant transport in aquifers, oil recovery in petroleum engineering, drug delivery in blood flow, gas-particle flow in combustion reactors, exhaust management in Polymer Electrolyte Membrane fuel cell technology, and so forth. The diffuse interface fluid models have become increasingly popular in the numerical modeling of interfacial phenomena associated with multiphase flows. They are able to capture smooth transitions of fluid interface, and simulations can be carried out on a fixed grid without explicit interface tracking. A particular challenge in solving diffuse interface models is that the diffusive interface of small width often exhibits instability such as bubble merging or splitting. Traditional high order methods are prone to spurious oscillations around diffusive interfaces which can pollute the numerical solution beyond the interface region and even cause blow-up of the code due to negative viscosity, density or mobility. The aim of this project is to develop high order numerical methods that can accurately capture moving interfaces of multiphase flow.Real-world applications see both diffusion dominated flows and advection dominated flows. The investigator first develops and analyzes provably superconvergent hybridizable discontinuous Galerkin methods (HDG) for solving diffuse interface fluid models in the diffusion-dominated regime. The key idea in the design is to approximate solution variables by higher order polynomials than those for the numerical traces and gradient variables, and to explore local projection based stabilization. The PI then designs stabilized high order HDG methods effected with the Scalar Auxiliary Variable (SAV) time-stepping schemes for advection-dominated flows. The methods stabilize advection in the nonlinear fourth order advection-diffusion equation while preserve the underlying energy laws. The stabilized SAV-HDG algorithms enable diffuse interface methods to accurately capture sharp fronts and unstable interfaces in the advection-dominated regime, and allow efficient parallel computation of smaller systems at each time step. Finally the PI develops and implements fast nonlinear HDG multigrid solvers for diffuse interface fluid models. The practical solvers will further address the lack of efficient iterative solvers/preconditioners for HDG methods Graduate students participate in the work of this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多相流在自然现象和工业应用中普遍存在。 常见的例子包括波浪破碎和晃动、含水层中的污染物运输、石油工程中的石油回收、血流中的药物输送、燃烧反应器中的气体-颗粒流、聚合物电解质膜燃料电池技术中的废气管理等。 扩散界面流体模型在多相流界面现象的数值模拟中得到了越来越广泛的应用。它们能够捕捉流体界面的平滑过渡,并且可以在固定网格上进行模拟,而无需显式的界面跟踪。 在求解扩散界面模型时,一个特殊的挑战是,小宽度的扩散界面往往表现出不稳定性,如气泡合并或分裂。传统的高阶方法容易在扩散界面附近产生虚假振荡,这会污染界面区域以外的数值解,甚至由于负粘性、负密度或负迁移率而导致代码爆破。 该项目的目的是开发高阶数值方法,可以准确地捕捉多相流的移动界面。实际应用中既有扩散主导的流动,也有平流主导的流动。研究者首先发展和分析了可证明超收敛的杂交间断Galerkin方法(HDG),用于求解扩散主导区域的扩散界面流体模型。设计中的关键思想是用比数值迹和梯度变量更高阶的多项式逼近解变量,并探索基于局部投影的稳定化。PI然后设计稳定的高阶HDG方法与标量辅助变量(SAV)的时间步进计划的平流为主的流动。这些方法稳定了平流 在非线性四阶对流扩散方程中,同时保持基本的能量定律。 稳定的SAV-HDG算法使扩散界面方法能够准确地捕获对流主导制度中的尖锐前沿和不稳定界面,并允许在每个时间步长对较小系统进行有效的并行计算。 最后,PI开发并实现了扩散界面流体模型的快速非线性HDG多重网格求解器。 实用的求解器将进一步解决HDG方法缺乏有效的迭代求解器/预处理器的问题。研究生参与该项目的工作。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Second Order, Unconditionally Stable, Linear Ensemble Algorithms for the Magnetohydrodynamics Equations
  • DOI:
    10.1007/s10915-022-02091-4
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    J. Carter;Daozhi Han;N. Jiang
  • 通讯作者:
    J. Carter;Daozhi Han;N. Jiang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daozhi Han其他文献

Rayleigh-Taylor instability for nonhomogeneous incompressible geophysical fluid with partial viscosity
具有部分粘性的非均匀不可压缩地球物理流体的瑞利-泰勒不稳定性
  • DOI:
    10.1016/j.jde.2024.07.042
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Chao Xing;Yanlong Fan;Daozhi Han;Quan Wang
  • 通讯作者:
    Quan Wang
Existence and uniqueness of global weak solutions to a Cahn–Hilliard–Stokes–Darcy system for two phase incompressible flows in karstic geometry
岩溶几何中两相不可压缩流Cahn-Hilliard-Stokes-Darcy系统全局弱解的存在性和唯一性
  • DOI:
    10.1016/j.jde.2014.07.013
  • 发表时间:
    2014-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Daozhi Han;Xiaoming Wang;Hao Wu
  • 通讯作者:
    Hao Wu
A second-order, mass-conservative, unconditionally stable and bound-preserving finite element method for the quasi-incompressible Cahn-Hilliard-Darcy system
  • DOI:
    10.1016/j.jcp.2024.113340
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yali Gao;Daozhi Han;Xiaoming Wang
  • 通讯作者:
    Xiaoming Wang
Error estimate of a decoupled numerical scheme for the Cahn–Hilliard–Stokes–Darcy system
Cahn-Hilliard-Stokes-Darcy 系统解耦数值格式的误差估计
  • DOI:
    10.1093/imanum/drab046
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Wenbin Chen;Daozhi Han;Xiaoming Wang;Shufen Wang;Yichao Zhang
  • 通讯作者:
    Yichao Zhang
Dynamic transitions and bifurcations for thermal convection in the superposed free flow and porous media
叠加自由流和多孔介质中热对流的动态转变和分叉
  • DOI:
    10.1016/j.physd.2020.132687
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daozhi Han;Quan Wang;Xiaoming Wang
  • 通讯作者:
    Xiaoming Wang

Daozhi Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daozhi Han', 18)}}的其他基金

Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
  • 批准号:
    2208231
  • 财政年份:
    2022
  • 资助金额:
    $ 15.28万
  • 项目类别:
    Standard Grant
Modeling and Hybridizable Discontinuous Galerkin Methods for Two-phase Flows in Karstic Geometry
岩溶几何中两相流的建模和可混合间断伽辽金方法
  • 批准号:
    1912715
  • 财政年份:
    2019
  • 资助金额:
    $ 15.28万
  • 项目类别:
    Standard Grant

相似国自然基金

Hybridizable间断谱元方法及其在波散射问题中的应用
  • 批准号:
    11341002
  • 批准年份:
    2013
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
  • 批准号:
    2309670
  • 财政年份:
    2023
  • 资助金额:
    $ 15.28万
  • 项目类别:
    Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
  • 批准号:
    2208231
  • 财政年份:
    2022
  • 资助金额:
    $ 15.28万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Hybridizable discontinuous Galerkin methods for non-linear integro-differential boundary value problems in magnetic plasma confinement
LEAPS-MPS:磁等离子体约束中非线性积分微分边值问题的混合不连续伽辽金方法
  • 批准号:
    2137305
  • 财政年份:
    2021
  • 资助金额:
    $ 15.28万
  • 项目类别:
    Standard Grant
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
  • 批准号:
    534997-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 15.28万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Hybridizable discontinuous Galerkin methods for the Cahn-Hilliard-Navier-Stokes system
Cahn-Hilliard-Navier-Stokes 系统的可杂交间断伽辽金方法
  • 批准号:
    566831-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 15.28万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
  • 批准号:
    534997-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 15.28万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Divergence-Free Hybridizable Discontinuous Galerkin Methods for the Incompressible Navier-Stokes Equations on Moving Domains and Their Application to Fluid-Structure Interaction
运动域不可压缩纳维-斯托克斯方程的无散杂化间断伽辽金方法及其在流固耦合中的应用
  • 批准号:
    2012031
  • 财政年份:
    2020
  • 资助金额:
    $ 15.28万
  • 项目类别:
    Continuing Grant
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
  • 批准号:
    534997-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 15.28万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Modeling and Hybridizable Discontinuous Galerkin Methods for Two-phase Flows in Karstic Geometry
岩溶几何中两相流的建模和可混合间断伽辽金方法
  • 批准号:
    1912715
  • 财政年份:
    2019
  • 资助金额:
    $ 15.28万
  • 项目类别:
    Standard Grant
Multiscale and Hybridizable Discontinuous Galerkin Methods for Dispersive Equations and Systems
色散方程和系统的多尺度和可混合非连续伽辽金方法
  • 批准号:
    1818998
  • 财政年份:
    2018
  • 资助金额:
    $ 15.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了