Efficient Numerical Methods for Time-harmonic Acoustic Wave Propagation
时谐声波传播的高效数值方法
基本信息
- 批准号:0610661
- 负责人:
- 金额:$ 17.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed reserch develops and analyzes efficient numerical methodsfor time-harmonic acoustic wave propagation problems in fluids and solids.Particularly, exterior two-dimensional and three-dimensional problems foracoustic scattering in inhomogenous media and fluid-structure scatteringare considered. The discretization of the governing PDE models is performedusing finite elements on orthogonal rectangular meshes with local adaptationto boundaries and interfaces. Special phase error reducing low-order finiteelements are studied and employed. The aim is to solve three-dimensionaltime-harmonic wave propagation problems in which the diameter of thecomputational domain is from tens to hundreds wavelengths. These problemslead to very large systems of linear equations which can have from millionsto several billions unknowns. Numerical methods for this frequency rangeare under active research, and no efficient method still seem to exist.The large scale linear systems are solved iteratively with a Schwarz-typedomain decomposition preconditioner. Very efficient subdomain preconditionersare constructed using fast direct solvers by means of domain embedding.This novelty makes the proposed approach very fast. The conditioning ofpreconditioned systems are analyzed for suitable model problems. Theresulting methods are constructed in such a way that the iterations canbe carried out on a small sparse subspace related to the interfaces.The studied scattering problems arise routinely in many disciplines.Due to limitations of contemporary methods and computational resourcesmany of these problems cannot be solved in practice. The aim of thisresearch is to develop numerical methods which enable the solution ofmany of these large problems. The first class of studied model problemsare acoustical geological surveys employed in oil exploration. Currentlyit is necessary to use crude methods for surveys which are in manycases inaccurate. The developed methods can eventually lead to improvedyield in the extraction of oil and reduced environmental impact.The second class of model problems describe scattering by elastic objectslike mines in seabed. Mines have been the single largest cause of fatalitiesin naval warfare. This part of the research is conducted in cooperationwith researchers at a Navy research center and it is closely related toa project funded by the Office of Naval Research. A broader goal of thisactivity is develop computational methods which help to enhance thedetection and identification capabilities of mines in seabed.
本研究发展并分析了时谐声波在流体和固体中传播问题的有效数值方法。特别考虑了非均匀介质中声散射和流固散射的外部二维和三维问题。在正交矩形网格上采用局部自适应边界和界面的有限元方法对控制模型进行离散化。研究并应用了特殊相位误差减小低阶有限元。其目的是解决计算域直径从几十到几百波长的三维时谐波传播问题。这些问题导致了非常大的线性方程组,其中可能有数百万到数十亿个未知数。对于这一频率范围的数值方法正在积极研究中,但似乎还没有有效的方法。采用schwarz型域分解预调节器迭代求解大型线性系统。采用域嵌入的方法,利用快速直接求解器构造了非常高效的子域预条件。这种新颖性使得所提出的方法非常快。对预调节系统的调节进行了分析,找出合适的模型问题。所得到的方法是这样构造的,迭代可以在与接口相关的小的稀疏子空间上进行。所研究的散射问题在许多学科中经常出现。由于现代方法和计算资源的限制,许多问题在实践中无法解决。本研究的目的是发展数值方法,使许多这类大问题的解决成为可能。第一类研究的模型问题是用于石油勘探的声学地质调查。目前有必要使用粗糙的方法进行调查,这些方法在许多情况下是不准确的。所开发的方法最终可以提高石油的采收率,减少对环境的影响。第二类模型问题描述了海底地雷等弹性物体的散射。水雷是海战中造成人员伤亡的最大单一原因。这部分研究是与海军研究中心的研究人员合作进行的,它与海军研究办公室资助的一个项目密切相关。这项活动的一个更广泛的目标是发展有助于提高海底地雷探测和识别能力的计算方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kazufumi Ito其他文献
Optimal Absorption Design and Sensitivity of Eigenvalues
最佳吸收设计和特征值灵敏度
- DOI:
10.1109/cdc.2006.377151 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
F. Fahroo;Kazufumi Ito - 通讯作者:
Kazufumi Ito
Approximate Nullspace Iterations for KKT Systems
KKT 系统的近似零空间迭代
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:1.5
- 作者:
Kazufumi Ito;K. Kunisch;V. Schulz;Ilia Gherman - 通讯作者:
Ilia Gherman
A theoretical framework for convergence and continuous dependence of estimates in inverse problems for distributed parameter systems
分布式参数系统反问题中估计的收敛性和连续依赖性的理论框架
- DOI:
10.1016/0893-9659(88)90166-8 - 发表时间:
1988 - 期刊:
- 影响因子:3.7
- 作者:
H. Banks;Kazufumi Ito - 通讯作者:
Kazufumi Ito
Recovery of inclusions in 2D and 3D domains for Poisson’s equation
恢复泊松方程 2D 和 3D 域中的夹杂物
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kazufumi Ito;Ji - 通讯作者:
Ji
Solutions to a Nonlinear Drift-diffusion Model for Semiconductors
半导体非线性漂移扩散模型的解决方案
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
W. Fang;Kazufumi Ito - 通讯作者:
Kazufumi Ito
Kazufumi Ito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
- 批准号:
2309687 - 财政年份:2023
- 资助金额:
$ 17.51万 - 项目类别:
Standard Grant
Efficient numerical methods for wave-action transport and scattering
波作用输运和散射的高效数值方法
- 批准号:
EP/W007436/1 - 财政年份:2022
- 资助金额:
$ 17.51万 - 项目类别:
Research Grant
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPAS-2020-00102 - 财政年份:2022
- 资助金额:
$ 17.51万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPIN-2020-06278 - 财政年份:2022
- 资助金额:
$ 17.51万 - 项目类别:
Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
- 批准号:
569181-2022 - 财政年份:2022
- 资助金额:
$ 17.51万 - 项目类别:
Postgraduate Scholarships - Doctoral
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPIN-2020-06278 - 财政年份:2021
- 资助金额:
$ 17.51万 - 项目类别:
Discovery Grants Program - Individual
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPAS-2020-00102 - 财政年份:2021
- 资助金额:
$ 17.51万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Robust and Efficient Numerical Methods for Matrix Problems with Singularity
奇异性矩阵问题的鲁棒高效数值方法
- 批准号:
20K14356 - 财政年份:2020
- 资助金额:
$ 17.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Robust and Efficient Numerical Methods for Electromagnetic Wave Propagation in Complex Media
复杂介质中电磁波传播的鲁棒高效数值方法
- 批准号:
2011943 - 财政年份:2020
- 资助金额:
$ 17.51万 - 项目类别:
Standard Grant
Collaborative Research: Efficient, Accurate, and Structure-Preserving Numerical Methods for Phase Fields-Type Models with Applications
合作研究:高效、准确、结构保持的相场型模型数值方法及其应用
- 批准号:
2012269 - 财政年份:2020
- 资助金额:
$ 17.51万 - 项目类别:
Standard Grant