Scalable Parallel Multilevel Domain Decomposition Methods
可扩展的并行多级域分解方法
基本信息
- 批准号:0612574
- 负责人:
- 金额:$ 8.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-15 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solving large linear systems of equations is often the most computationally expensive part in many scientific and engineering problems. The design of scalable parallel algorithms for solving large linear systems of equations is one of the most important problems in scientific computing. Among the most effective parallel iterative methods are parallel multigrid methods, multilevel matrix preconditioners, and domain decomposition methods. Domain decomposition methods are ideal for parallel implementation. But none of the current multilevel domain decomposition algorithms has shown convincing parallel scalable experimental results, and in practice the convergence rates often deteriorate with the increase of the number of levels. On the other hand, a uniform convergence rate has been proved, both theoretically and experimentally, for the multigrid V-cycles for solving certain symmetric positive definite problems. But the parallel performance of multigrid V-cycles is much less satisfactory. The main goals in this project are the design and analysis of scalable parallel multilevel domain decomposition methods, and the study of connections between the related parallel multilevel iterative methods. A solid theoretical foundation should be valid for these inherently related multilevel preconditioners. Such a theory will provide a practical guide for the design of scalable parallel multilevel iterative methods.Applications of the proposed algorithms to important scientific and engineering computational problems, e.g., elasticity problems, Stokes/Navier-Stokes problems, elastic structure vibration problems, and acoustic scattering problems, will be studied in this project. These problems are closely connected with many technologies such as aircraft design, sonar, radar, geophysical exploration, medical imaging and nondestructive testing.
求解大型线性方程组通常是许多科学和工程问题中计算成本最高的部分。求解大型线性方程组的可扩展并行算法的设计是科学计算中最重要的问题之一。其中最有效的并行迭代方法是并行多重网格方法,多级矩阵预处理,区域分解方法。区域分解方法是并行实现的理想方法。但目前的多层区域分解算法都没有令人信服的并行可扩展性实验结果,而且在实际应用中,收敛速度往往随着层数的增加而变差。另一方面,在理论和实验上都证明了多重网格V-圈求解某些对称正定问题的一致收敛速度。但多重网格V循环的并行性能却不尽如人意。本计画的主要目标是设计与分析可扩充的平行多层区域分解方法,以及研究相关平行多层迭代方法之间的连结。一个坚实的理论基础应该是有效的,这些内在相关的多级预处理。这种理论将为可扩展的并行多级迭代方法的设计提供一个实际的指导。所提出的算法在重要的科学和工程计算问题中的应用,例如,弹性力学问题、Stokes/Navier-Stokes问题、弹性结构振动问题和声散射问题。这些问题与飞机设计、声纳、雷达、地球物理勘探、医学成像和无损检测等技术密切相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Li其他文献
Curative effects of probing alone and probing combined with nasolacrimal injection of levofloxacin ophthalmic gel on congenital duct obstruction of children from 3–12 months of age
单纯探诊与探诊联合鼻泪道注射左氧氟沙星眼用凝胶治疗3~12月龄儿童先天性导管阻塞的疗效观察
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Wei Sun;Sui;Jing Li;Huangjiang Zhao;S. Xie;Xuelin Huang;Shuibin Luo - 通讯作者:
Shuibin Luo
Protective effects of jca 3000 + CP against ultraviolet-induced damage in HaCaT and MEF cells
jca 3000 CP 对 HaCaT 和 MEF 细胞紫外线损伤的保护作用
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Shujuan Ren;Jing Li;Wei Wang;H. Guan - 通讯作者:
H. Guan
Phospholipase D in the human ocular surface and in pterygium.
人眼表面和翼状胬肉中的磷脂酶 D。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:2.8
- 作者:
L. Tong;Jing Li;J. Chew;D. Tan;R. Beuerman - 通讯作者:
R. Beuerman
Increased diastolic blood pressure and apnea time contribute to the poor apnea and hypopnea index and life quality of primary snoring: a cohort study combined with external validation
舒张压和呼吸暂停时间增加导致原发性打鼾的呼吸暂停和呼吸不足指数以及生活质量较差:一项队列研究与外部验证相结合
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.1
- 作者:
Wenying Pan;L. Xia;Lingling Liu;Ling Gu;Mengqin Xiang;Huachuan Zhang;Xiaoying Wei;Zhenyu Yang;Xiaoli Zhou;Jing Li;Daxiong Zeng;Junhong Jiang - 通讯作者:
Junhong Jiang
Multiple Acceleration of High-velocity Flyer Driven By Long-pulse KrF Laser
长脉冲KrF激光器驱动高速飞行器的多次加速
- DOI:
10.1364/fio.2018.ftu4c.4 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Baoxian Tian;Zhao Wang;Pingyu Zhang;Zhixing Gao;Jing Li;Fengming Hu - 通讯作者:
Fengming Hu
Jing Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Li', 18)}}的其他基金
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
- 批准号:
2340171 - 财政年份:2024
- 资助金额:
$ 8.42万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Structured Population Dynamics Subject to Stoichiometric Constraints
合作研究:RUI:受化学计量约束的结构化人口动态
- 批准号:
2322104 - 财政年份:2023
- 资助金额:
$ 8.42万 - 项目类别:
Standard Grant
PIPP Phase I: Comprehensive, Integrated, Intelligent System for Early and Accurate Pandemic Prediction, Prevention, and Preparation at Personal and Population Levels
PIPP第一阶段:全面、集成、智能的系统,用于个人和人群层面的早期、准确的流行病预测、预防和准备
- 批准号:
2200255 - 财政年份:2022
- 资助金额:
$ 8.42万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Market Conduct in Technology Adoption in the Automobile Industry
NSF-BSF:合作研究:汽车行业技术采用的市场行为
- 批准号:
2049263 - 财政年份:2021
- 资助金额:
$ 8.42万 - 项目类别:
Standard Grant
CAREER: Associative In-Memory Graph Processing Paradigm: Towards Tera-TEPS Graph Traversal In a Box
职业:关联内存图处理范式:在盒子中实现 Tera-TEPS 图遍历
- 批准号:
2040463 - 财政年份:2020
- 资助金额:
$ 8.42万 - 项目类别:
Continuing Grant
FET: CCF: Small: Computational Drug Prediction through Joint Learning
FET:CCF:小型:通过联合学习进行计算药物预测
- 批准号:
2006780 - 财政年份:2020
- 资助金额:
$ 8.42万 - 项目类别:
Standard Grant
Inverse Mapping of Spatial-Temporal Molecular Heterogeneity from Imaging Phenotype
从成像表型逆映射时空分子异质性
- 批准号:
2053170 - 财政年份:2020
- 资助金额:
$ 8.42万 - 项目类别:
Continuing Grant
RAPID:Genomic Variation Analysis of Coronavirus to Better Understand the Spread of COVID-19
RAPID:冠状病毒的基因组变异分析,以更好地了解 COVID-19 的传播
- 批准号:
2027667 - 财政年份:2020
- 资助金额:
$ 8.42万 - 项目类别:
Standard Grant
CRII: CSR: Enabling Efficient Real-Time Systems upon Multiple Parallel Resources
CRII:CSR:在多个并行资源上实现高效的实时系统
- 批准号:
1948457 - 财政年份:2020
- 资助金额:
$ 8.42万 - 项目类别:
Standard Grant
Inverse Mapping of Spatial-Temporal Molecular Heterogeneity from Imaging Phenotype
从成像表型逆映射时空分子异质性
- 批准号:
1903135 - 财政年份:2019
- 资助金额:
$ 8.42万 - 项目类别:
Continuing Grant
相似国自然基金
强流低能加速器束流损失机理的Parallel PIC/MCC算法与实现
- 批准号:11805229
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advances in Scalable Iterative Solvers: Multilevel, Nonlinearly Preconditioned, and Parallel-in-Time
可扩展迭代求解器的进展:多级、非线性预处理和时间并行
- 批准号:
RGPIN-2019-04155 - 财政年份:2022
- 资助金额:
$ 8.42万 - 项目类别:
Discovery Grants Program - Individual
Advances in Scalable Iterative Solvers: Multilevel, Nonlinearly Preconditioned, and Parallel-in-Time
可扩展迭代求解器的进展:多级、非线性预处理和时间并行
- 批准号:
RGPIN-2019-04155 - 财政年份:2021
- 资助金额:
$ 8.42万 - 项目类别:
Discovery Grants Program - Individual
Advances in Scalable Iterative Solvers: Multilevel, Nonlinearly Preconditioned, and Parallel-in-Time
可扩展迭代求解器的进展:多级、非线性预处理和时间并行
- 批准号:
RGPIN-2019-04155 - 财政年份:2020
- 资助金额:
$ 8.42万 - 项目类别:
Discovery Grants Program - Individual
Advances in Scalable Iterative Solvers: Multilevel, Nonlinearly Preconditioned, and Parallel-in-Time
可扩展迭代求解器的进展:多级、非线性预处理和时间并行
- 批准号:
RGPIN-2019-04155 - 财政年份:2019
- 资助金额:
$ 8.42万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Modular Multilevel Converter With Parallel Connectivity-Novel Topology, Control, and Applications
合作研究:具有并行连接的模块化多电平转换器——新颖的拓扑、控制和应用
- 批准号:
1608929 - 财政年份:2016
- 资助金额:
$ 8.42万 - 项目类别:
Standard Grant
Collaborative Research: Modular Multilevel Converter with Parallel Connectivity -- Novel Topology, Control, and Applications
合作研究:具有并行连接的模块化多电平转换器——新颖的拓扑、控制和应用
- 批准号:
1610074 - 财政年份:2016
- 资助金额:
$ 8.42万 - 项目类别:
Standard Grant
Parallel fast multilevel co-clustering algorithms
并行快速多级共聚类算法
- 批准号:
464193-2014 - 财政年份:2014
- 资助金额:
$ 8.42万 - 项目类别:
University Undergraduate Student Research Awards
Parallel multilevel solvers for coupled interface problems
用于耦合接口问题的并行多级求解器
- 批准号:
237098861 - 财政年份:2013
- 资助金额:
$ 8.42万 - 项目类别:
Research Grants
Fast and Accurate Electromagnetic Analysis of Metamaterials With Parallel Multilevel Fast Multipole Algorithm
利用并行多级快速多极算法对超材料进行快速准确的电磁分析
- 批准号:
EP/J007471/1 - 财政年份:2012
- 资助金额:
$ 8.42万 - 项目类别:
Research Grant
Parallel Algebraic Recursive Multilevel Solvers: Advances in Scalable and Robust High Performance Linear System Solution Methods
并行代数递归多级求解器:可扩展且鲁棒的高性能线性系统解决方法的进展
- 批准号:
0000443 - 财政年份:2000
- 资助金额:
$ 8.42万 - 项目类别:
Continuing Grant