Advances in Scalable Iterative Solvers: Multilevel, Nonlinearly Preconditioned, and Parallel-in-Time
可扩展迭代求解器的进展:多级、非线性预处理和时间并行
基本信息
- 批准号:RGPIN-2019-04155
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We live in an era where progress in science, technology and business is driven by unprecedented availability of computational power and large amounts of digital data. The goal of this proposal is to pursue substantial advances in the computational methods that drive this progress in two principal application areas. First, we will develop novel simulation methods for fluid and plasma flows that aim to advance scientific discovery and engineering design by finding new ways to optimally exploit the power of very large parallel computers, and by developing new efficient ways to quantify uncertainties in computational models, in the pursuit of truly predictive computational science. The world's largest parallel computers now have millions of parallel processor cores, and we will exploit this parallelism by considering simulation methods that use parallel computations not only in space but also in time. Uncertainties will be quantified and unknown parameters will be inferred in new and efficient manners by considering accelerated sampling techniques enabled by multiple levels in the computational models. Second, we will develop new efficient optimization methods for applications in data analysis, aiming to provide substantial speed increases for the analysis techniques that generate unprecedented new quantitative insights enabled by the data revolution. Existing optimization techniques used for problems such as movie recommendation or neural network training require many iterations to reach accurate predictions. The proposed research will investigate novel ways to accelerate the convergence of these data analysis techniques, by applying methods that optimally extrapolate iterative updates, combined with randomized techniques that find a way around the vastness of the available data. The results of the proposed research promise to be of great benefit to Canada: algorithmic exploration of compute-intensive problems with large data sets is a crucial building block in our rapidly evolving information economy. The computational methods developed in this proposal will have direct applications in Canada's economy and society, in data-informed science and engineering simulations, and optimization for data analysis. Moreover, the proposed work will train highly qualified personnel with crucial algorithmic and large-scale computing skills that are essential for Canada's knowledge economy.
我们生活在这样一个时代,科学、技术和商业的进步是由前所未有的计算能力和大量的数字数据驱动的。本提案的目标是在两个主要应用领域中推动计算方法的实质性进展。首先,我们将为流体和等离子体流动开发新的模拟方法,旨在通过寻找新的方法来优化利用超大型并行计算机的能力,并通过开发新的有效方法来量化计算模型中的不确定性,从而推进科学发现和工程设计,以追求真正的预测计算科学。世界上最大的并行计算机现在拥有数百万个并行处理器内核,我们将通过考虑不仅在空间上而且在时间上使用并行计算的模拟方法来利用这种并行性。不确定性将被量化,未知参数将以新的和有效的方式推断,通过考虑由计算模型中的多个层次实现的加速采样技术。其次,我们将为数据分析应用开发新的高效优化方法,旨在为数据革命带来的前所未有的新定量见解的分析技术提供实质性的速度提升。用于电影推荐或神经网络训练等问题的现有优化技术需要多次迭代才能达到准确的预测。该研究将探索加速这些数据分析技术融合的新方法,通过应用优化外推迭代更新的方法,结合随机化技术,找到一种绕过大量可用数据的方法。拟议的研究结果将对加拿大大有裨益:利用大数据集对计算密集型问题进行算法探索,是我们快速发展的信息经济的重要组成部分。本提案中开发的计算方法将直接应用于加拿大的经济和社会,数据科学和工程模拟,以及数据分析的优化。此外,拟议的工作将培养具有关键算法和大规模计算技能的高素质人才,这对加拿大的知识经济至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DeSterck, Hans其他文献
DeSterck, Hans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DeSterck, Hans', 18)}}的其他基金
Advances in Scalable Iterative Solvers: Multilevel, Nonlinearly Preconditioned, and Parallel-in-Time
可扩展迭代求解器的进展:多级、非线性预处理和时间并行
- 批准号:
RGPIN-2019-04155 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Advances in Scalable Iterative Solvers: Multilevel, Nonlinearly Preconditioned, and Parallel-in-Time
可扩展迭代求解器的进展:多级、非线性预处理和时间并行
- 批准号:
RGPIN-2019-04155 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Advances in Scalable Iterative Solvers: Multilevel, Nonlinearly Preconditioned, and Parallel-in-Time
可扩展迭代求解器的进展:多级、非线性预处理和时间并行
- 批准号:
RGPIN-2019-04155 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Multilevel Algorithms for Tensor and Network Problems
张量和网络问题的多级算法
- 批准号:
311947-2013 - 财政年份:2016
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Multilevel Algorithms for Tensor and Network Problems
张量和网络问题的多级算法
- 批准号:
311947-2013 - 财政年份:2015
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Multilevel Algorithms for Tensor and Network Problems
张量和网络问题的多级算法
- 批准号:
311947-2013 - 财政年份:2014
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Maximizing the WARP actuator power output under high torque requirements by computational modelling and structural optimization
通过计算建模和结构优化,在高扭矩要求下最大化 WARP 执行器的功率输出
- 批准号:
460759-2013 - 财政年份:2013
- 资助金额:
$ 3.5万 - 项目类别:
Engage Grants Program
Multilevel Algorithms for Tensor and Network Problems
张量和网络问题的多级算法
- 批准号:
311947-2013 - 财政年份:2013
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Multilevel methods for scientific computing
科学计算的多级方法
- 批准号:
311947-2008 - 财政年份:2012
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Multilevel methods for scientific computing
科学计算的多级方法
- 批准号:
311947-2008 - 财政年份:2011
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
- 批准号:
MR/Y011686/1 - 财政年份:2025
- 资助金额:
$ 3.5万 - 项目类别:
Fellowship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
- 批准号:
2319913 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
- 批准号:
10086990 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Studentship
FAST CAR-T: Faster, Adaptive and Scalable Technologies For CAR-T Manufacture
FAST CAR-T:更快、自适应和可扩展的 CAR-T 制造技术
- 批准号:
EP/Z532770/1 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Research Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
- 批准号:
2340453 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
- 批准号:
2332891 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
- 批准号:
2335583 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant