Collaborative Research: Plasma-Surface Interactions in Hydrogen Plasma-Induced Transitions from Carbon Nanotubes to Diamond Nanostructures

合作研究:氢等离子体诱导的从碳纳米管到金刚石纳米结构转变中的等离子体-表面相互作用

基本信息

  • 批准号:
    0613629
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

ABSTRACTNational Science FoundationProposal Number: CTS-0613629 / 0613501Principal Investigator: Aydil, E.S. / Maroudas, D.Affiliation: University of Minnesota / University of Massachusetts-AmherstProposal Title: Collaborative Research: Plasma-Surface Interactions in Hydrogen Plasma-Induced Transitions from Carbon Nanotubes to Diamond Nanostructures Nanostructured thin films of group IV materials, such as carbon nanotubes (CNTs), silicon, germanium, and diamond have a broad range of existing and potential applications in solar cells, biological or chemical sensors, filters, heat sinks, high-power semiconductor devices, and molecular electronics. All of these films are grown by plasma deposition from gases such as SiH4, CH4 and GeH4; a plasma is an ionized gas consisting of electrons, ions, and reactive radicals and is created by application of radio-frequency electric fields to low-pressure gases. Nanostructured Si, Ge, and C films are produced only when the corresponding feed gases are heavily diluted in H2 with copious amounts of atomic H present in the plasma. Fundamental understanding of the plasma-surface interactions that govern the nucleation and growth of these films is essential for tailoring their properties. Accordingly, the goal of the proposed research is to investigate the role of plasma-surface interactions, and specifically the role of H, in the plasma deposition of CNTs and in the H2 plasma-induced CNT-to-diamond transition. We ask whether CNTs, carbon nanofibers, and hydrogenated amorphous carbon produced by plasma deposition can be transformed into diamond at low temperatures by exposure to H atoms formed by plasma dissociation of H2. Toward this goal, we propose a research plan that integrates plasma and surface characterization experiments with atomic-scale simulations. The computational results will be compared with the experimental data and the insights gained from the simulations will be used to guide new experimental studies. Plasma-surface interactions and the effects of these interactions on the film properties are among the least understood aspects of plasma processing. There is a crucial need to complement empirical process development and characterization with systematic analysis of the key fundamental processes. To this end, the proposed research aims to link plasma and surface diagnostic measurements and structural characterization with computational atomic-scale studies of chemical reactions and crystallization mechanisms to address technologically important and scientifically interesting phenomena, namely, growth of CNTs and structural transitions to diamond of CNTs and other carbon forms. The proposed project cuts across traditional boundaries between physics, chemistry, chemical engineering, materials science, as well as applied and numerical mathematics. Thus, it provides ideal means for training students to address technologically important problems using an integrated, state-of-the-art experimental and computational approach. The PIs involve undergraduate students in research, particularly encouraging students who are underrepresented in science and engineering, and disseminate broadly the research results in the physics, chemistry, electronic materials, and plasma engineering communities. We expect that our research strategy, methodology, and results will be applicable to studying the growth and processing of other group IV materials and their alloys, such as Ge, Si/Ge, and SiC,and potentially enable technological advancements in low-temperature plasma deposition of group IV films, which have a variety of applications in our daily lives.This project was funded through the NSF/DOE Partnership in Basic Plasma Science and Engineering.
国家科学基金会建议编号:CTS-0613629/0613501主要研究员:Aydil,E.S./Maroudas,D.隶属于:明尼苏达大学/马萨诸塞大学-AmherstProposal标题:合作研究:氢等离子体诱导从碳纳米管到钻石纳米结构的转变中的等离子体-表面相互作用第四类材料的纳米结构薄膜,如碳纳米管、硅、锗和钻石,在太阳能电池、生物或化学传感器、过滤器、散热器、大功率半导体器件和分子电子学方面具有广泛的现有和潜在的应用。所有这些薄膜都是通过等离子体沉积从SiH4、CH4和GeH4等气体中生长出来的;等离子体是一种由电子、离子和反应性自由基组成的电离气体,通过向低压气体施加射频电场而产生。只有当相应的进气在氢中被大量稀释,并且等离子体中存在大量的原子H时,才能产生纳米结构的Si、Ge和C薄膜。对控制这些薄膜成核和生长的等离子体-表面相互作用的基本了解对于调整它们的特性是至关重要的。因此,这项研究的目标是研究等离子体-表面相互作用的作用,特别是氢在等离子体沉积碳纳米管和氢等离子体诱导的碳纳米管到钻石转变中的作用。我们提出的问题是,等离子体沉积产生的碳纳米管、碳纳米纤维和氢化无定形碳是否可以通过暴露在等离子体分解氢形成的氢原子中在低温下转化为金刚石。为了实现这一目标,我们提出了一个将等离子体和表面表征实验与原子尺度模拟相结合的研究计划。计算结果将与实验数据进行比较,从模拟中获得的见解将用于指导新的实验研究。等离子体-表面相互作用以及这些相互作用对薄膜性能的影响是等离子体处理中最不被了解的方面之一。迫切需要对关键的基本进程进行系统分析,以补充经验进程的发展和特征。为此,拟议的研究旨在将等离子体和表面诊断测量和结构表征与化学反应和结晶机制的计算原子尺度研究联系起来,以处理技术上重要和科学上感兴趣的现象,即碳纳米管的生长和碳纳米管和其他碳形式的结构向钻石的转变。拟议中的项目跨越了物理、化学、化学工程、材料科学以及应用和数值数学之间的传统界限。因此,它为培训学生使用集成的、最先进的实验和计算方法来解决重要的技术问题提供了理想的手段。PIS让本科生参与研究,特别是鼓励那些在科学和工程领域代表性不足的学生,并在物理、化学、电子材料和等离子工程界广泛传播研究成果。我们希望我们的研究策略、方法和结果将适用于研究其他IV类材料及其合金的生长和加工,如Ge、Si/Ge和碳化硅,并有可能使低温等离子体沉积在日常生活中有各种应用的IV类薄膜的技术进步。该项目由美国国家科学基金会/美国能源部基础等离子体科学与工程合作伙伴关系资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eray Aydil其他文献

Eray Aydil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eray Aydil', 18)}}的其他基金

I-Corps: Heliotrope Light-shifting Thin Films to Increase the Performance of Silicon Solar Panels
I-Corps:天芥菜光移薄膜可提高硅太阳能电池板的性能
  • 批准号:
    2347106
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for the Electrification of the Chemical Industry (CECI)
规划资助:化工电气化工程研究中心(CECI)
  • 批准号:
    1936709
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SusChEM: Synthesis and Characterization of Pyrite Thin Films - Towards Sustainable Photovoltaics
SusChEM:黄铁矿薄膜的合成和表征 - 迈向可持续光伏
  • 批准号:
    1309642
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Copper Zinc Tin Sulfide Based Solar Cells
铜锌锡硫化物太阳能电池
  • 批准号:
    0931145
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: A Combined Experimental and Theoretical Investigation of Plasma Deposition of Nanocrystalline Silicon Films
合作研究:纳米晶硅薄膜等离子体沉积的实验与理论相结合的研究
  • 批准号:
    0549310
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
NIRT: Photovoltaic devices based on semiconductor nanoparticles and nanowires
NIRT:基于半导体纳米颗粒和纳米线的光伏器件
  • 批准号:
    0506672
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: A Combined Experimental and Theoretical Investigation of Plasma Deposition of Nanocrystalline Silicon Films
合作研究:纳米晶硅薄膜等离子体沉积的实验与理论相结合的研究
  • 批准号:
    0317459
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
A Combined Experimental and Theoretical Investigation of the Plasma-Surface Interactions in Plasma Deposition of Hydrogenated Amorphous and Nanocrystalline Silicon Films
氢化非晶硅和纳米晶硅薄膜等离子体沉积中等离子体-表面相互作用的实验与理论相结合的研究
  • 批准号:
    0078711
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Fundamental Research in Plasma Enhanced Chemical Vapor Deposition of Hydrogenated Amorphous Silicon and Nanocystalline Silicon Films from SiH4/H2/Ar Discharges
SiH4/H2/Ar 放电等离子体增强化学气相沉积氢化非晶硅和纳米晶硅薄膜的基础研究
  • 批准号:
    9713280
  • 财政年份:
    1997
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
NSF Young Investigator
NSF 青年研究员
  • 批准号:
    9457758
  • 财政年份:
    1994
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: ECLIPSE: Physical and Chemical Insights into Particle-Plasma Interactions in Dusty Plasma using Optical Trapping and Multi-Fold Laser Diagnostics
合作研究:ECLIPSE:使用光学捕获和多重激光诊断对尘埃等离子体中的粒子-等离子体相互作用进行物理和化学洞察
  • 批准号:
    2308948
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
  • 批准号:
    2403970
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
  • 批准号:
    2318495
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
  • 批准号:
    2318493
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ECLIPSE: Physical and Chemical Insights into Particle-Plasma Interactions in Dusty Plasma using Optical Trapping and Multi-Fold Laser Diagnostics
合作研究:ECLIPSE:使用光学捕获和多重激光诊断对尘埃等离子体中的粒子-等离子体相互作用进行物理和化学洞察
  • 批准号:
    2308947
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
  • 批准号:
    2318494
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
ECLIPSE/Collaborative Research: Unravelling the Coupled Physics of Piezoelectric and Plasma Behavior in Piezoelectric Stimulated Plasma Sources
ECLIPSE/合作研究:揭示压电受激等离子体源中压电和等离子体行为的耦合物理
  • 批准号:
    2206406
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Multimessenger Plasma Physics Center (MPPC)
合作研究:WoU-MMA:多信使等离子体物理中心(MPPC)
  • 批准号:
    2206607
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Novel Plasma Physics of Trapped Antimatter
合作研究:捕获反物质的新型等离子体物理学
  • 批准号:
    2205620
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: WoU-MMA: Multimessenger Plasma Physics Center (MPPC)
合作研究:WoU-MMA:多信使等离子体物理中心(MPPC)
  • 批准号:
    2206608
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了