RUI: Controlling Complex Networks: Approximate Linear Programming Techniques

RUI:控制复杂网络:近似线性规划技术

基本信息

  • 批准号:
    0620787
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-15 至 2010-01-31
  • 项目状态:
    已结题

项目摘要

This grant provides funding for the development of dramatically faster algorithms for a broad class of queueing network control problems. A neurodynamic programming (NDP) approach is taken that uses function approximation and learning. The approach converts the control problem to a very large linear program, which is then made efficient by exploiting its structure to eliminate most of the constraints. A detailed understanding of these networks, including results from fluid, Brownian, and large deviation analysis, analysis of the optimality equations, and characteristics of optimal policies, will be used to design the approximation architecture. Approximations will be sought that give a robustly accurate bound on optimal cost; effective policies will be constructed by combining the policy obtained from the linear program with known heuristics. Adaptive forms of the algorithm will be investigated that incorporate simulation and learning to iteratively refine the approximation architecture. Numerical tests will be performed, using examples from semiconductor manufacturing and telephone call centers. The general behavior of the algorithms will be investigated in terms of error bounds and convergence.Queueing network control provides an analytic framework for scheduling issues in manufacturing processes, supply chains, service operations, and computer networks. If successful, this project will provide a public domain software tool that extends the size of network control problems that can be solved. Based on tests with small networks, tight bounds on optimal cost should be attainable for networks with up to roughly eight buffers and looser bounds for larger networks. The tool will facilitate the development of cost-saving operating policies in these fields, primarily by allowing better design and benchmarking of heuristic policies. Undergraduate students from mathematics and computer science will be involved in this research effort.
这笔拨款为开发更快的算法来解决广泛的排队网络控制问题提供了资金。采用神经动态编程(NDP)的方法,使用函数逼近和学习。这种方法将控制问题转化为一个非常大的线性规划,然后通过利用其结构来消除大多数约束来使其高效。对这些网络的详细了解,包括流体分析、布朗分析和大偏差分析的结果,最优性方程的分析,以及最优策略的特征,将用于设计近似体系结构。将寻求给出关于最优成本的稳健准确的界的近似;将从线性规划获得的策略与已知的启发式方法相结合,将构建有效的策略。算法的自适应形式将被研究,它结合了模拟和学习来迭代地改进近似体系结构。将使用半导体制造和电话呼叫中心的例子进行数值测试。排队网络控制为制造过程、供应链、服务运营和计算机网络中的调度问题提供了一个分析框架。如果成功,该项目将提供一个公共领域软件工具,扩大可以解决的网络控制问题的规模。根据对小型网络的测试,对于最多有大约8个缓冲区的网络,应该可以达到最佳成本的严格界限,而对于较大的网络,应该可以达到较宽松的界限。该工具将促进在这些领域制定节约成本的业务政策,主要是通过允许更好地设计和确定启发式政策的基准。来自数学和计算机科学的本科生将参与这项研究工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Veatch其他文献

Michael Veatch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Role Of Retinoid Oxidoreductase Complex In Controlling The Embryonic Development
类维生素A氧化还原酶复合物在控制胚胎发育中的作用
  • 批准号:
    10658252
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Investigation of complex factors controlling arsenic accumulation in surface paddy soils and its application to nature-mimetic soil remediation
表层水稻土砷积累复杂因素研究及其在仿自然土壤修复中的应用
  • 批准号:
    23H02349
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An optical-genetic toolbox for monitoring and controlling diverse neuromodulatory circuits governing complex behaviors in primates
用于监测和控制灵长类动物复杂行为的多种神经调节回路的光遗传工具箱
  • 批准号:
    10650669
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Sensorimotor Transformations for Controlling Heading Direction in the Insect Central Complex
昆虫中央复合体控制前进方向的感觉运动变换
  • 批准号:
    10717148
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding and controlling complex modified electrochemical interfaces using novel measurements and model systems
使用新颖的测量和模型系统理解和控制复杂的改性电化学界面
  • 批准号:
    RGPIN-2022-04419
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
RII Track--4: Controlling Point-Defect Energetics in Complex Oxides Via Interfacial Strain
RII Track--4:通过界面应变控制复杂氧化物中的点缺陷能量
  • 批准号:
    2245128
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The role of Pdx1-recruited Chd4:NuRD complex in controlling mature #-cell function
Pdx1招募的Chd4:NuRD复合物在控制成熟中的作用
  • 批准号:
    10634693
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Controlling complex fluid displacement flows in confined geometry
控制受限几何形状中的复杂流体驱替流
  • 批准号:
    RGPIN-2015-04829
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Ultrasonic heating type incremental sheet forming method creating complex shape and controlling surface function
超声波加热式渐进式板材成形方法创造复杂形状并控制表面功能
  • 批准号:
    21K03812
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Controlling the Elongasome: Exploring protein complex formation in the bacterial protein complex responsible for cell shape.
控制延长体:探索负责细胞形状的细菌蛋白质复合物中蛋白质复合物的形成。
  • 批准号:
    2590917
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了