QUANTUM: Collaborative Research: On-Chip Solid-State Cavity QED for Quantum Information Science

量子:合作研究:用于量子信息科学的片上固态腔 QED

基本信息

  • 批准号:
    0621862
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

Recent research activities in quantum information science have advanced our understanding of quantum mechanics and proposed essential components used in quantum information processing. Quantum decoherence is a major factor affecting the quality of quantum information processing devices, including on-demand single photon sources and quantum nodes. The team conducts a collaborative and interdisciplinary research program for improving the quantum coherence of single-quantum-dot photonic-crystal-cavity systems with the help of state-of-the-art nanofabrication and computational modeling. On-chip solid-state cavity quantum electrodynamics systems, to be constructed by the team, are compact and scalable on a semiconductor wafer. The hardware is essentially integrated optics consisting of compact cavities and planar waveguides, so photonic crystals will provide a practical means of constructing compact integrated quantum information-processing chips. Constructing such ultimate photon localization systems in photonic crystals will open up many possibilities in relevant fields in both science and engineering, much as engineering electronic bands in semiconductor crystals has done. The team's interdisciplinary efforts to resolve the computational and experimental challenges will facilitate the realization of the full potential of nanotechnology in the quantum information science field. The development of high quantum-coherence components will also advance technology of other applications including WDM chips, optical logic circuits, and sensors on a chip, and enhance the understanding of the nature of light.
最近量子信息科学的研究活动促进了我们对量子力学的理解,并提出了用于量子信息处理的基本组件。量子退相干是影响量子信息处理设备质量的主要因素,包括按需单光子源和量子节点。该团队开展了一项合作和跨学科的研究计划,以提高单量子点光子晶体腔系统的量子相干性,并借助最先进的纳米制造和计算建模。该团队将构建的芯片上固态腔量子电动力学系统是紧凑的,在半导体晶片上是可扩展的。硬件本质上是由紧凑型腔和平面波导组成的集成光学,因此光子晶体将提供一种构建紧凑型集成量子信息处理芯片的实用手段。在光子晶体中构建这样的终极光子局域系统将在科学和工程的相关领域开辟许多可能性,就像半导体晶体中的工程电子带所做的那样。该团队为解决计算和实验挑战而进行的跨学科努力将有助于实现纳米技术在量子信息科学领域的全部潜力。高量子相干元件的发展也将促进其他应用的技术,包括WDM芯片、光学逻辑电路和芯片上的传感器,并加强对光本质的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tomoyuki Yoshie其他文献

Tomoyuki Yoshie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tomoyuki Yoshie', 18)}}的其他基金

Microlasers and microcavities based on three-dimensional photonic crystal
基于三维光子晶体的微激光器和微腔
  • 批准号:
    0901599
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344658
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
  • 批准号:
    2311950
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimizing KTaO3 Superconductivity for Quantum Applications
合作研究:优化 KTaO3 超导性以实现量子应用
  • 批准号:
    2327535
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
  • 批准号:
    2329938
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Quantum Education by Adaptively Addressing Misconceptions in Virtual Reality
合作研究:通过适应性地解决虚拟现实中的误解来推进量子教育
  • 批准号:
    2302817
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了