The Constitutive Equation of the Tissue Remodeling of Blood Vessels

血管组织重塑的本构方程

基本信息

  • 批准号:
    0626438
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-10-01 至 2009-09-30
  • 项目状态:
    已结题

项目摘要

The Constitutive Equation of the Tissue Remodeling of Blood VesselsABASTRACT (250 words) The remodeling of blood vessels in human due to high blood pressure is very important to health and has to be understood. The objective of this proposal is to make a more complete plan of biomechanical research to gain a fuller understanding to solve physiological problems. The first step is to describe the spatial distribution of each kind of the bio-molecules in the cell as a tensor. The tensor is a mathematical concept used to describe the geometrical configuration of a system of vectors in a 3-dimentional space and has been used widely. The second step is to determine the relationship between the mechanical stresses acting in the blood vessel wall and the tensors of the bio-molecules in vascular remodeling. This relationship is the Constitutive Equation of the remodeling tissue.The U.S. Congress has been paying attention to the health of aging population in our country, since baby boomers are getting to retire. Hypertension is one of the major diseases affecting many aging people, since it will cause stroke, heart attack, heart failure, and other complications. The molecular mechanisms of hypertension have been the central theme in biological investigations. However, the connection between the bio-molecules and the mechanical forces is little known, but can be revealed by determining the Constitutive Equation of the remodeling tissue. The importance of this research is to provide a key which is required in the translation of basic science to human benefits. Educational impacts will be achieved by recruiting students to participate in this research.
血管组织重塑的本构方程ABASTRACT(250字)由于高血压引起的人体血管重塑对健康非常重要,必须加以理解。 本建议的目的是使生物力学研究的计划更加完整,以获得更充分的理解,以解决生理问题。 第一步是将细胞中每种生物分子的空间分布描述为张量。 张量是描述三维空间中向量组几何构型的一个数学概念,应用广泛。 第二步是确定作用在血管壁上的机械应力与血管重塑中生物分子张量之间的关系。 随着婴儿潮一代的退休,美国国会一直关注我国老龄人口的健康问题。 高血压是影响许多老年人的主要疾病之一,因为它会导致中风、心脏病发作、心力衰竭和其他并发症。 高血压的分子机制一直是生物学研究的中心主题。 然而,生物分子和机械力之间的联系知之甚少,但可以通过确定重塑组织的本构方程来揭示。 这项研究的重要性在于提供了一把钥匙,这把钥匙是将基础科学转化为人类利益所必需的。 教育影响将通过招募学生参与这项研究来实现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuan-Cheng Fung其他文献

Yuan-Cheng Fung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuan-Cheng Fung', 18)}}的其他基金

Biomechanical Foundation of Tissue Engineering of Arteries and Veins
动静脉组织工程生物力学基础
  • 批准号:
    8917576
  • 财政年份:
    1990
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
US-Japan Joint Seminar: Biomechanics / Osaka, Japan / September/October l987
美日联合研讨会:生物力学/日本大阪/1987 年 9 月/10 月
  • 批准号:
    8613714
  • 财政年份:
    1987
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Stress and Growth in the Heart, Lung and Blood Vessels
心脏、肺和血管的压力和生长
  • 批准号:
    8518559
  • 财政年份:
    1986
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Cardio-Pulmonary Dynamics
心肺动力学
  • 批准号:
    7910560
  • 财政年份:
    1980
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
International Congress of Biorheology to Be Held in La Jolla, California From August 28 Thru September 1,1978
国际生物流变学大会将于 1978 年 8 月 28 日至 9 月 1 日在加利福尼亚州拉霍亚举行
  • 批准号:
    7726073
  • 财政年份:
    1978
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Cardio-Pulmonary Dynamics
心肺动力学
  • 批准号:
    7519401
  • 财政年份:
    1975
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    ARC Future Fellowships
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
  • 批准号:
    2420266
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
High Order Wave Equation Algorithms for the Frequency Domain
频域高阶波动方程算法
  • 批准号:
    2345225
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Hadron-Hadron Interactions and Equation of State from High-Energy Nuclear Collisions
高能核碰撞的强子-强子相互作用和状态方程
  • 批准号:
    23H01173
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Loewner equation and Teichmueller space theory
Loewner 方程和 Teichmueller 空间理论
  • 批准号:
    23H01078
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A new nuclear matter calculation method based on realistic nuclear forces and the effect of many-body terms on the equation of state
基于现实核力和多体项对状态方程影响的新核物质计算方法
  • 批准号:
    23K03397
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of an integral equation theory satisfying the variational principle and accurate for long-range potential systems
满足变分原理且对长程势系统准确的积分方程理论的发展
  • 批准号:
    23K04666
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a dietary estimation equation MEMO, using microdata to estimate nutrient intake from sources other than meals
开发饮食估计方程 MEMO,使用微观数据来估计膳食以外来源的营养摄入量
  • 批准号:
    23K12696
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Creation of low-noise quantum 3D imaging technique based on transport of intensity equation
基于强度传输方程的低噪声量子3D成像技术的创建
  • 批准号:
    23K17749
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
IHBEM: Data-driven integration of behavior change interventions into epidemiological models using equation learning
IHBEM:使用方程学习将行为改变干预措施以数据驱动的方式整合到流行病学模型中
  • 批准号:
    2327836
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了