Compositional descriptors for large scale comparative metagenome analysis

用于大规模比较宏基因组分析的组成描述符

基本信息

  • 批准号:
    178869699
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2010
  • 资助国家:
    德国
  • 起止时间:
    2009-12-31 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

Metagenomics together with metatranscriptomics provides an essential tool for the investigation of the phylogenetic distribution, the functional potential and the metabolic activity of microbial communities under natural conditions. Currently, rapid progress in sequencing technologies dramatically improves the basis for metagenomic studies. The growing amount and the heterogeneity of sequence material, however, implies a big challenge for bioinformatics. The goal of this project is to realize a bioinformatics framework for comparative metagenome and metatranscriptome analysis which is based on statistical descriptors derived from the protein domain distribution of a sample. These descriptors will be designed to provide a high degree of invariance across different sequencing platforms and a highly informative view on the phylogenetic and functional composition of microbial communities. A probabilistic mixture modelling approach will be utilized to achieve cross-platform comparability of taxonomic and functional descriptors. With the inclusion of an ultra-fast method for identification of protein domains, developed by the applicant, the approach will readily be applicable to metagenomic projects of any size, and the results will even be reproducible by small labs and institutions which do not possess extensive computational facilities. For evaluation of the approach strong collaboration partners from the field of marine microbiology will be involved to test the methodology under real world conditions providing valuable feedback for refinement of the methods.
宏基因组学和宏转录组学为研究自然条件下微生物群落的系统发育分布、功能潜力和代谢活动提供了重要的工具。目前,测序技术的快速进步极大地改善了宏基因组研究的基础。然而,序列材料的数量不断增加且异质性给生物信息学带来了巨大的挑战。该项目的目标是实现用于比较宏基因组和宏转录组分析的生物信息学框架,该框架基于从样本的蛋白质域分布衍生的统计描述符。这些描述符的设计目的是在不同测序平台之间提供高度的不变性,并提供有关微生物群落的系统发育和功能组成的信息丰富的视图。将利用概率混合建模方法来实现分类和功能描述符的跨平台可比性。通过包含由申请人开发的用于识别蛋白质结构域的超快速方法,该方法将很容易适用于任何规模的宏基因组项目,并且结果甚至可以由不具备广泛计算设施的小型实验室和机构重现。为了评估该方法,来自海洋微生物学领域的强大合作伙伴将参与在现实条件下测试该方法,为方法的完善提供宝贵的反馈。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring Neighborhoods in the Metagenome Universe
探索宏基因组宇宙中的邻域
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Peter Meinicke其他文献

Dr. Peter Meinicke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Peter Meinicke', 18)}}的其他基金

Machine learning methods for genome reconstruction in metagenomics
宏基因组学中基因组重建的机器学习方法
  • 批准号:
    324226106
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Computational models for metatranscriptome analysis
宏转录组分析的计算模型
  • 批准号:
    215674903
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
  • 批准号:
    2348238
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Orbital-based Descriptors for Dynamical Properties of Quantum Defects
职业:基于轨道的量子缺陷动力学特性描述符
  • 批准号:
    2340733
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development and spectral analysis of an ensemble machine learning model using quantum chemical descriptors
使用量子化学描述符的集成机器学习模型的开发和光谱分析
  • 批准号:
    23K04678
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Concise descriptors of genomic data facilitate mechanistic inference
职业:基因组数据的简明描述符有助于机械推理
  • 批准号:
    2238125
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Bias Mitigation for Deep Neural Networks by Concept-based Image Descriptors
通过基于概念的图像描述符减轻深度神经网络的偏差
  • 批准号:
    23H00497
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Stereo-sensitive molecular descriptors for machine learning approach to design of asymmetric catalysts
用于设计不对称催化剂的机器学习方法的立体敏感分子描述符
  • 批准号:
    23K16936
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Integrated Moment-Based Descriptors and Deep Neural Network for Screening Three-Dimensional Biological Data
合作研究:集成基于矩的描述符和深度神经网络用于筛选三维生物数据
  • 批准号:
    2151678
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of 3D-Conformational Descriptors of Organic Fragments for Design of Molecular Structures using Deep Neural Network
使用深度神经网络开发用于分子结构设计的有机片段 3D 构象描述符
  • 批准号:
    22K05073
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Integrated Moment-Based Descriptors and Deep Neural Network for Screening Three-Dimensional Biological Data
合作研究:集成基于矩的描述符和深度神经网络用于筛选三维生物数据
  • 批准号:
    2151679
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了