Collaborative Research: Integrated Moment-Based Descriptors and Deep Neural Network for Screening Three-Dimensional Biological Data
合作研究:集成基于矩的描述符和深度神经网络用于筛选三维生物数据
基本信息
- 批准号:2151678
- 负责人:
- 金额:$ 16.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Three-dimensional (3D) imaging is essential for understanding complex biological systems, as it provides indispensable information about organs, tissues, and molecules that cannot be captured using two dimensions. While contemporary imaging methods produce an enormous amount of image data, tools for efficient and effective analysis of such volumetric data sets remain to be developed. This project aims to provide a general foundation for analyzing volumetric images obtained using multiple imaging modalities and for various data types. The research aims to contribute to progress in many science and technology domains in which image analysis is crucial and of significant societal impact. The primary application will be to biological molecular recognition and classification. The methods are also expected to apply to other biological and medical 3D data retrieval as well as other types of 3D data in other disciplines, such as human face recognition, geographical and climate data, and computer-aided design. The project will leverage efforts in the interdisciplinary computational life science and engineering departments at Purdue University and Saint Joseph’s University by recruiting and training students through multidisciplinary coursework and direct involvement with the project. The two institutions will foster student and faculty participation in this research by organizing a joint mathematical biology conference and a summer undergraduate research fest.This project aims to develop and integrate two complementary and synergistic methods: The first is to extend mathematical moments to encompass fractional-order moment descriptors and hence provide a more accurate representation of 3D images. The second is to integrate the new moment-based approach into a deep neural network to achieve high accuracy and efficiency in classifying 3D data. Finally, the techniques will be combined to implement a one-stop biomolecular 3D image web server, which will be publicly available and used for screening protein ligand-binding pockets, functional sites, and drug molecule search. Protein structures will be represented with voxel grids, mapping values onto 3D grid points. Because voxelization is highly prevalent in 3D imaging, the new methods are expected to apply to data from other imaging disciplines, such as radiology (x-ray, MRI, CT) and electron microscopy. The new techniques for integrating moment-based approaches and deep learning for 3D data recognition are also expected to substantially influence the machine learning domain.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
三维(3D)成像对于理解复杂的生物系统至关重要,因为它提供了无法使用二维捕获的有关器官,组织和分子的不可或缺的信息。虽然当代成像方法产生了大量的图像数据,但用于高效和有效地分析这种体积数据集的工具仍有待开发。该项目旨在为分析使用多种成像模式获得的体积图像和各种数据类型提供一般基础。该研究旨在促进许多科学和技术领域的进步,其中图像分析至关重要,并具有重大的社会影响。主要应用将是生物分子识别和分类。这些方法也有望应用于其他生物和医学3D数据检索以及其他学科的其他类型的3D数据,如人脸识别,地理和气候数据以及计算机辅助设计。该项目将利用普渡大学和圣约瑟夫大学的跨学科计算生命科学和工程系的努力,通过多学科课程和直接参与该项目来招募和培训学生。这两个机构将通过组织一个联合的数学生物学会议和一个夏季本科生研究节来促进学生和教师参与这项研究。这个项目旨在开发和整合两个互补和协同的方法:第一个是扩展数学矩,以包含分数阶矩描述符,从而提供更准确的3D图像表示。二是将新的基于矩的方法集成到深度神经网络中,以实现对3D数据进行分类的高精度和高效率。最后,这些技术将结合起来,实现一站式生物分子3D图像网络服务器,该服务器将公开提供,并用于筛选蛋白质配体结合口袋,功能位点和药物分子搜索。蛋白质结构将用体素网格表示,将值映射到3D网格点上。由于体素化在3D成像中非常普遍,因此新方法有望应用于其他成像学科的数据,例如放射学(X射线,MRI,CT)和电子显微镜。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响力审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daisuke Kihara其他文献
NuFold: end-to-end approach for RNA tertiary structure prediction with flexible nucleobase center representation
NuFold:具有灵活核碱基中心表示的 RNA 三级结构预测的端到端方法
- DOI:
10.1038/s41467-025-56261-7 - 发表时间:
2025-01-21 - 期刊:
- 影响因子:15.700
- 作者:
Yuki Kagaya;Zicong Zhang;Nabil Ibtehaz;Xiao Wang;Tsukasa Nakamura;Pranav Deep Punuru;Daisuke Kihara - 通讯作者:
Daisuke Kihara
Local surface shape-based protein function prediction using Zernike descriptors
- DOI:
10.1016/j.bpj.2008.12.3435 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Daisuke Kihara;Lee Sael;Rayan Chikhi - 通讯作者:
Rayan Chikhi
Effect of phosphorylation barcodes on arrestin binding to a chemokine receptor
磷酸化条形码对 arrestin 与趋化因子受体结合的影响
- DOI:
10.1038/s41586-025-09024-9 - 发表时间:
2025-05-21 - 期刊:
- 影响因子:48.500
- 作者:
Qiuyan Chen;Christopher T. Schafer;Somnath Mukherjee;Kai Wang;Martin Gustavsson;James R. Fuller;Katelyn Tepper;Thomas D. Lamme;Yasmin Aydin;Parth Agrawal;Genki Terashi;Xin-Qiu Yao;Daisuke Kihara;Anthony A. Kossiakoff;Tracy M. Handel;John J. G. Tesmer - 通讯作者:
John J. G. Tesmer
Improved De Novo Main-Chain Tracing Method Mainmast for Multi-Chain Modeling, Local Refinement, and Graphical User Interface
- DOI:
10.1016/j.bpj.2018.11.3094 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Genki Terashi;Yuhong Zha;Daisuke Kihara - 通讯作者:
Daisuke Kihara
De Novo Computational Protein Tertiary Structure Modeling Pipeline for Cryo-EM Maps of Intermediate Resolution
- DOI:
10.1016/j.bpj.2019.11.1657 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Daisuke Kihara;Genki Terashi;Sai Raghavendra Maddhuri Venkata Subramaniya - 通讯作者:
Sai Raghavendra Maddhuri Venkata Subramaniya
Daisuke Kihara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daisuke Kihara', 18)}}的其他基金
Collaborative Research: III: Medium: Systematic De Novo Identification of Macromolecular Complexes in Cryo-Electron Tomography Images
合作研究:III:介质:冷冻电子断层扫描图像中大分子复合物的系统从头识别
- 批准号:
2211598 - 财政年份:2022
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
Collaborative Research: Identification and Structural Modeling of Intrinsically Disordered Protein-Protein and Protein-Nucleic Acids Interactions
合作研究:本质无序的蛋白质-蛋白质和蛋白质-核酸相互作用的识别和结构建模
- 批准号:
2146026 - 财政年份:2022
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
IIBR Informatics: Development of Multimodal approaches for protein function prediction
IIBR 信息学:蛋白质功能预测多模式方法的开发
- 批准号:
2003635 - 财政年份:2020
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
Collaborative Research: RoL: Revealing a new mechanism of action for eukaryotic transcriptional activation domains
合作研究:RoL:揭示真核转录激活域的新作用机制
- 批准号:
1925643 - 财政年份:2019
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
Collaborative Research: Efficient mathematical and computational framework for biological 3D image data retrieval
协作研究:生物 3D 图像数据检索的高效数学和计算框架
- 批准号:
1614777 - 财政年份:2016
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
ABI Innovation: Protein Functional Sites Identification Using Sequence Variation
ABI Innovation:利用序列变异识别蛋白质功能位点
- 批准号:
1262189 - 财政年份:2013
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
III: Small: Rapid screening of interacting ligands and proteins
III:小:快速筛选相互作用的配体和蛋白质
- 批准号:
1319551 - 财政年份:2013
- 资助金额:
$ 16.4万 - 项目类别:
Continuing Grant
III: Small: Quality Assessment of Computational Protein Models
III:小:计算蛋白质模型的质量评估
- 批准号:
0915801 - 财政年份:2009
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
Template-Based Protein Structure Prediction Beyond Sequence Homology
超越序列同源性的基于模板的蛋白质结构预测
- 批准号:
0850009 - 财政年份:2009
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332661 - 财政年份:2024
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331296 - 财政年份:2024
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332662 - 财政年份:2024
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346650 - 财政年份:2024
- 资助金额:
$ 16.4万 - 项目类别:
Standard Grant