Aspects of Harmonic Analysis and Hamiltonian PDE's
调和分析和哈密顿偏微分方程的各个方面
基本信息
- 批准号:0627882
- 负责人:
- 金额:$ 13.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-12-01 至 2008-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Jean Bourgain, University of Illinois, U-CDMS-0322370Abstract:The PI proposes to study issues in Hamiltonian turbulence such as growth of higher Sobolev norms in smooth solutions of Schroedinger equations. Considering for instance the 2D defocusing cubic NLS with periodic boundary conditions, what can one say about transition of energy to higher modes for large time? Only power like upper bounds seem presently known. The PI proposes to explore dynamical systems methods in this context.In linear Schroedinger equations, things are better understood, partly due to progress in quasi-periodic localization. For instance the PI established recently the absence of chaotic diffusion for the quantum kicked rotor for small kicks and almost all values of the parameters. He proposes here to study further the problem of large kicks and estimating localization lengths.Most partial differential equations studied by mathematicians originate from Physics or elsewhere. They are supposed to model certain phenomena and their relevance here is often confirmed numerically. But while this stage of development from phenomenology to mathematical modeling is by most scientists considered satisfactory, it is usually only the beginning of purely mathematical exploration. The aim now is to study these equations rigorously as mathematical objects, independently of any a priori assumptions, and to try to recover the expected behaviour as mathematical theorems. On one hand, this line of thought has in the past led to some of the great mathematical theories of modern days (integrability, turbulence, etc.). But even so, much more challenges remain, as well in the dissipative as conservative regime. The emphasis in this proposal lies on diffusion in Hamiltonian equations, in particular the Schroedinger equation.
主要研究者:Jean Bourgain,University of Illinois,U-CDMS-0322370摘要:PI建议研究哈密顿湍流中的问题,例如在薛定谔方程的光滑解中增长更高的Sobolev范数。 例如,考虑到具有周期性边界条件的二维散焦立方NLS,对于长时间的能量向更高模式的过渡,我们可以说些什么?目前看来,只有像上限这样的权力才是已知的。PI建议在此背景下探索动力系统方法。在线性薛定谔方程中,事情得到了更好的理解,部分原因是准周期局部化的进展。例如,PI最近建立了量子被踢转子的混沌扩散的情况下,小踢和几乎所有的参数值。他建议在这里进一步研究问题的大踢和估计本地化的长度。大多数偏微分方程研究的数学家起源于物理学或其他地方。它们被认为是对某些现象的模型,它们在这里的相关性经常被数字证实。虽然从现象学到数学建模的这一发展阶段被大多数科学家认为是令人满意的,但它通常只是纯数学探索的开始。现在的目标是严格地研究这些方程作为数学对象,独立于任何先验假设,并试图恢复预期的行为作为数学定理。一方面,这种思路在过去导致了现代一些伟大的数学理论(可积性,湍流等)。但即便如此,在耗散和保守的政权中,仍然存在更多的挑战。在这个建议的重点在于扩散的哈密顿方程,特别是薛定谔方程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean Bourgain其他文献
A remark on the behaviour ofL p-multipliers and the range of operators acting onL p-spaces
- DOI:
10.1007/bf02808215 - 发表时间:
1992-10-01 - 期刊:
- 影响因子:0.800
- 作者:
Jean Bourgain - 通讯作者:
Jean Bourgain
Monotone Boolean functions capture their primes
- DOI:
10.1007/s11854-014-0033-6 - 发表时间:
2014-11-13 - 期刊:
- 影响因子:0.900
- 作者:
Jean Bourgain - 通讯作者:
Jean Bourgain
On hilbertian subsets of finite metric spaces
关于有限度量空间的希尔伯特子集
- DOI:
- 发表时间:
1986 - 期刊:
- 影响因子:0
- 作者:
Jean Bourgain;T. Figiel;V. Milman - 通讯作者:
V. Milman
Sum-product theorems in algebraic number fields
- DOI:
10.1007/s11854-009-0033-0 - 发表时间:
2010-01-19 - 期刊:
- 影响因子:0.900
- 作者:
Jean Bourgain;Mei-Chu Chang - 通讯作者:
Mei-Chu Chang
On the spectral gap for finitely-generated subgroups of SU(2) THANKSREF="*" ID="*"The first author was supported in part by the NSF. The second author was supported in part by DARPA and the NSF.
- DOI:
10.1007/s00222-007-0072-z - 发表时间:
2007-09-09 - 期刊:
- 影响因子:3.600
- 作者:
Jean Bourgain;Alex Gamburd - 通讯作者:
Alex Gamburd
Jean Bourgain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean Bourgain', 18)}}的其他基金
Collaborative Research: New Decouplings and Applications
合作研究:新的解耦和应用
- 批准号:
1800640 - 财政年份:2018
- 资助金额:
$ 13.53万 - 项目类别:
Continuing Grant
Aspects of Harmonic Analysis and Hamiltonian PDEs
调和分析和哈密顿偏微分方程的各个方面
- 批准号:
0808042 - 财政年份:2008
- 资助金额:
$ 13.53万 - 项目类别:
Continuing Grant
Aspects of Harmonic Analysis and Hamiltonian PDE's
调和分析和哈密顿偏微分方程的各个方面
- 批准号:
0322370 - 财政年份:2003
- 资助金额:
$ 13.53万 - 项目类别:
Continuing Grant
Aspects of Nonlinear Hamiltonian PDE
非线性哈密顿量偏微分方程的各个方面
- 批准号:
9801013 - 财政年份:1998
- 资助金额:
$ 13.53万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Trigonometric Series and Applications
数学科学:三角级数问题及其应用
- 批准号:
9308345 - 财政年份:1993
- 资助金额:
$ 13.53万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Trigonometric Series and Applications
数学科学:三角级数问题及其应用
- 批准号:
9107476 - 财政年份:1991
- 资助金额:
$ 13.53万 - 项目类别:
Standard Grant
Mathematical Sciences: Functional Analysis and Harmonic Analysis
数学科学:泛函分析和调和分析
- 批准号:
8606252 - 财政年份:1986
- 资助金额:
$ 13.53万 - 项目类别:
Standard Grant
相似国自然基金
算子方法在Harmonic数恒等式中的应用
- 批准号:11201241
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Ricci-Harmonic流的长时间存在性
- 批准号:11126190
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Aspects of Thinness in Harmonic Analysis
谐波分析中的稀度方面
- 批准号:
RGPIN-2016-03719 - 财政年份:2021
- 资助金额:
$ 13.53万 - 项目类别:
Discovery Grants Program - Individual
Aspects of Thinness in Harmonic Analysis
谐波分析中的稀度方面
- 批准号:
RGPIN-2016-03719 - 财政年份:2019
- 资助金额:
$ 13.53万 - 项目类别:
Discovery Grants Program - Individual
Aspects of Thinness in Harmonic Analysis
谐波分析中的稀度方面
- 批准号:
RGPIN-2016-03719 - 财政年份:2018
- 资助金额:
$ 13.53万 - 项目类别:
Discovery Grants Program - Individual
Flow methods in geometric aspects of harmonic analysis.
调和分析几何方面的流动方法。
- 批准号:
1935855 - 财政年份:2017
- 资助金额:
$ 13.53万 - 项目类别:
Studentship
Aspects of Thinness in Harmonic Analysis
谐波分析中的稀度方面
- 批准号:
RGPIN-2016-03719 - 财政年份:2017
- 资助金额:
$ 13.53万 - 项目类别:
Discovery Grants Program - Individual
Aspects of Thinness in Harmonic Analysis
谐波分析中的稀度方面
- 批准号:
RGPIN-2016-03719 - 财政年份:2016
- 资助金额:
$ 13.53万 - 项目类别:
Discovery Grants Program - Individual
Aspects of thinness in harmonic analysis
调和分析中的稀疏性方面
- 批准号:
44597-2011 - 财政年份:2015
- 资助金额:
$ 13.53万 - 项目类别:
Discovery Grants Program - Individual
Aspects of thinness in harmonic analysis
调和分析中的稀疏性方面
- 批准号:
44597-2011 - 财政年份:2014
- 资助金额:
$ 13.53万 - 项目类别:
Discovery Grants Program - Individual
Aspects of thinness in harmonic analysis
调和分析中的稀疏性方面
- 批准号:
44597-2011 - 财政年份:2013
- 资助金额:
$ 13.53万 - 项目类别:
Discovery Grants Program - Individual
Aspects of thinness in harmonic analysis
调和分析中的稀疏性方面
- 批准号:
44597-2011 - 财政年份:2012
- 资助金额:
$ 13.53万 - 项目类别:
Discovery Grants Program - Individual