Collaborative Research: New Decouplings and Applications
合作研究:新的解耦和应用
基本信息
- 批准号:1800640
- 负责人:
- 金额:$ 26.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigators have recently advanced a new set of tools called decouplings, that can successfully quantify the ways in which waves traveling in different directions interact with each other. While these tools were initially intended for certain problems about differential equations, they have also led to important breakthroughs in number theory. More precisely, Diophantine equations are potentially complicated systems of equations involving whole numbers, and mathematicians are interested in counting the number of solutions to such systems. Unlike waves, numbers do not oscillate, at least not in an obvious manner, but one can think of numbers as frequencies, and thus associate them to waves. In this way, problems related to counting the number of solutions to Diophantine systems can be rephrased in the language of quantifying wave interferences. This project will further extend the scope of decouplings towards the resolution of fundamental problems in harmonic analysis and number theory. The project will make new tools accessible and useful to a large part of the mathematical community.Decouplings have proved remarkably flexible in addressing a wide variety of problems in such diverse fields as number theory, partial differential equations and harmonic analysis. One important circle of questions that remain to be addressed concerns the decoupling inequalities for curves on small spatial balls. Also, the cone poses a lot of interesting problems, even in three dimensions. The square function estimate, the local smoothing conjecture and, the decoupling into small caps are just a few examples of related problems for the cone. Progress on these problems is likely to lead to progress on many other problems. Finally, the combination of decouplings and the polynomial method has recently led to significant progress in the restriction theory of curved manifolds. The principal investigators intend to seek further improvements in this exciting and rapidly developing area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
主要研究人员最近提出了一套新的工具,称为“叠加”,可以成功地量化不同方向传播的波相互作用的方式。虽然这些工具最初是为了解决微分方程的某些问题,但它们也导致了数论的重大突破。更确切地说,丢番图方程是一个潜在的复杂的方程组,涉及整数,数学家们对计算这样的方程组的解的个数很感兴趣。与波不同,数字不会振荡,至少不会以明显的方式振荡,但人们可以将数字视为频率,从而将它们与波联系起来。通过这种方式,与计算丢番图系统的解的数量有关的问题可以用量化波干扰的语言来重新表述。这个项目将进一步扩大对调和分析和数论的基本问题的解决方案的范围。该项目将使新的工具,方便和有用的大部分数学界。解耦已被证明是非常灵活的,在解决各种各样的问题,在这样的不同领域的数论,偏微分方程和谐波分析。一个重要的圈的问题,仍然有待解决的关注的解耦不等式的曲线上的小空间球。此外,圆锥体提出了很多有趣的问题,即使是在三维空间中。平方函数估计,局部平滑猜想和解耦成小帽只是锥相关问题的几个例子。在这些问题上取得的进展有可能导致在许多其他问题上取得进展。最后,最近,组合的多项式和多项式方法导致显着进展的限制理论的曲流形。主要研究人员打算在这个令人兴奋和迅速发展的领域寻求进一步的改进。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean Bourgain其他文献
A remark on the behaviour ofL p-multipliers and the range of operators acting onL p-spaces
- DOI:
10.1007/bf02808215 - 发表时间:
1992-10-01 - 期刊:
- 影响因子:0.800
- 作者:
Jean Bourgain - 通讯作者:
Jean Bourgain
Monotone Boolean functions capture their primes
- DOI:
10.1007/s11854-014-0033-6 - 发表时间:
2014-11-13 - 期刊:
- 影响因子:0.900
- 作者:
Jean Bourgain - 通讯作者:
Jean Bourgain
On hilbertian subsets of finite metric spaces
关于有限度量空间的希尔伯特子集
- DOI:
- 发表时间:
1986 - 期刊:
- 影响因子:0
- 作者:
Jean Bourgain;T. Figiel;V. Milman - 通讯作者:
V. Milman
Sum-product theorems in algebraic number fields
- DOI:
10.1007/s11854-009-0033-0 - 发表时间:
2010-01-19 - 期刊:
- 影响因子:0.900
- 作者:
Jean Bourgain;Mei-Chu Chang - 通讯作者:
Mei-Chu Chang
On the spectral gap for finitely-generated subgroups of SU(2) THANKSREF="*" ID="*"The first author was supported in part by the NSF. The second author was supported in part by DARPA and the NSF.
- DOI:
10.1007/s00222-007-0072-z - 发表时间:
2007-09-09 - 期刊:
- 影响因子:3.600
- 作者:
Jean Bourgain;Alex Gamburd - 通讯作者:
Alex Gamburd
Jean Bourgain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean Bourgain', 18)}}的其他基金
Aspects of Harmonic Analysis and Hamiltonian PDEs
调和分析和哈密顿偏微分方程的各个方面
- 批准号:
0808042 - 财政年份:2008
- 资助金额:
$ 26.31万 - 项目类别:
Continuing Grant
Aspects of Harmonic Analysis and Hamiltonian PDE's
调和分析和哈密顿偏微分方程的各个方面
- 批准号:
0627882 - 财政年份:2005
- 资助金额:
$ 26.31万 - 项目类别:
Continuing Grant
Aspects of Harmonic Analysis and Hamiltonian PDE's
调和分析和哈密顿偏微分方程的各个方面
- 批准号:
0322370 - 财政年份:2003
- 资助金额:
$ 26.31万 - 项目类别:
Continuing Grant
Aspects of Nonlinear Hamiltonian PDE
非线性哈密顿量偏微分方程的各个方面
- 批准号:
9801013 - 财政年份:1998
- 资助金额:
$ 26.31万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Trigonometric Series and Applications
数学科学:三角级数问题及其应用
- 批准号:
9308345 - 财政年份:1993
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Trigonometric Series and Applications
数学科学:三角级数问题及其应用
- 批准号:
9107476 - 财政年份:1991
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
Mathematical Sciences: Functional Analysis and Harmonic Analysis
数学科学:泛函分析和调和分析
- 批准号:
8606252 - 财政年份:1986
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315699 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
- 批准号:
2346230 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2415067 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Continuing Grant