Error Correction Systems for Nano-Scale Fault-Tolerant Memories
纳米级容错存储器的纠错系统
基本信息
- 批准号:0634969
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-10-01 至 2010-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the proposed research, highly reliable memories made of unreliable components will be developedand characterized in terms of their complexity and ability to retain the stored information. The main challenge is that in nano-scale systems both the storage elements and logic gates are faulty. It is in contrast to the state-ofthe- art systems where only the memory elements are considered unreliable while error correction encoders and decoders are assumed to be made of reliable logic gates.The set of problems that will be addressed in this research can be condensed into the following question:given n memory cells and m universal logic gates which fail following a known random mechanism, what is the optimal memory architecture which stores the maximum number of information bits for the longest period of time with arbitrary low probability of error? This complex problem can be divided and reformulated in many ways, but, interestingly, even some of the most fundamental questions related to this problem are still unanswered. The most important question is related to the following two fundamentally different approaches in fault-tolerant memories: (i) To improve reliability, the logic gate resources may be invested into a von Neumann multiplexing scheme. In this way, one can build highly redundant reliable networks that simulate the function of universal logic gates, and then use such better gates to build an error correction encoder and decoder. (ii)Alternatively, the logic gate resources may be invested into building a more powerful error correcting code (i.e.,decoder) capable of handling both memory elements as well as logic gates errors. Which of these twoapproaches is optimal for a given failure mechanism? On a broad scale, is it better to deal with a reliability issue on a device or on a system level?Intellectual Merit:The unique feature of the nano-systems that both the storage elements and logic gates are unreliable makes the problem of ensuring fault-tolerance theoretically very important, because the process of error correction is not error-free as assumed in classical information theory. Making error correcting codes stronger and transmitters and receivers more complex will not necessarily improve the performance of a system. It is likely that for a given failure mechanism, there is a trade off between receiver complexity and its performance.Our approach to developing fault-tolerant memory architectures is based on a method developed byTaylor and refined by Kuznetsov. Taylor and Kuznetsov (TK) showed that memory systems have nonzerocomputational (storage) capacity, i.e. the redundancy necessary to ensure reliability grows asymptoticallylinearly with the memory size. Two fundamental open problems that will be addressed in this research aredetermining storage capacity of nano-scale memories and the development of capacity approaching fault-tolerant architectures. The equivalence of the restoration phase in the TK method and faulty Gallager-B algorithm (as explained in Project Description), will enable us to tackle these and other important problems in reliable storage on unreliable media using the large body of knowledge in codes on graphs and iterative decoding gained in the past decade.Broader Impact:This program will contribute significantly to the evolution of data storage technologies and the informationinfrastructure in the United States of America and abroad. Another important aspect is the establishment of atight interdisciplinary integration of knowledge in coding and signal processing, and nano-scale devices andsubsystems into programs benefiting undergraduate and graduate students at the University of Arizona and theindustrial technical research community.
在提出的研究中,将开发由不可靠组件组成的高可靠存储器,并以其复杂性和保留存储信息的能力为特征。主要的挑战在于,在纳米级系统中,存储元件和逻辑门都存在故障。这与目前的系统形成了鲜明对比,在目前的系统中,只有存储元件被认为是不可靠的,而纠错编码器和解码器被认为是由可靠的逻辑门组成的。本研究将解决的一系列问题可以归结为以下问题:给定n个存储单元和m个通用逻辑门,它们在已知的随机机制下失效,在任意低错误概率的情况下,在最长的时间内存储最大数量的信息位的最佳存储架构是什么?这个复杂的问题可以用许多方法来划分和重新表述,但有趣的是,甚至与这个问题有关的一些最基本的问题仍然没有答案。最重要的问题与容错存储器中以下两种根本不同的方法有关:(i)为了提高可靠性,逻辑门资源可以投入到冯·诺伊曼多路复用方案中。通过这种方式,可以构建高冗余可靠的网络,模拟通用逻辑门的功能,然后使用这些更好的门来构建纠错编码器和解码器。(ii)或者,逻辑门资源可以投资于构建一个更强大的纠错码(即解码器),能够处理内存元素和逻辑门错误。对于给定的失效机制,这两种方法中哪一种是最优的?在更广泛的范围内,是在设备级别还是在系统级别处理可靠性问题更好?智力优势:纳米系统的独特特征是存储元件和逻辑门都是不可靠的,这使得确保理论上的容错问题非常重要,因为错误纠正的过程并不像经典信息论中假设的那样是没有错误的。使纠错码更强、发射机和接收机更复杂不一定会提高系统的性能。对于给定的故障机制,很可能在接收方复杂性和性能之间进行权衡。我们开发容错内存架构的方法是基于taylor开发并由Kuznetsov改进的方法。Taylor和Kuznetsov (TK)表明,存储器系统具有非零计算(存储)容量,即确保可靠性所需的冗余随着存储器大小渐近线性增长。本研究将解决的两个基本开放问题是确定纳米级存储器的存储容量和开发接近容错架构的容量。TK方法和有缺陷的Gallager-B算法中恢复阶段的等效性(如项目描述中所解释的)将使我们能够利用过去十年中获得的图上代码和迭代解码中的大量知识,解决在不可靠媒体上可靠存储中的这些和其他重要问题。更广泛的影响:该项目将为美国和国外数据存储技术和信息基础设施的发展做出重大贡献。另一个重要的方面是建立紧密的跨学科整合的知识,在编码和信号处理,纳米级设备和子系统到项目受益本科生和研究生在亚利桑那大学和工业技术研究界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bane Vasic其他文献
Bane Vasic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bane Vasic', 18)}}的其他基金
Collaborative Research: Secure and Efficient Post-quantum Cryptography: from Coding Theory to Hardware Architecture
合作研究:安全高效的后量子密码学:从编码理论到硬件架构
- 批准号:
2052751 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: QODED: Quantum codes Optimized for the Dynamics between Encoded Computation and Decoding using Classical Coding Techniques
协作研究:CIF:中:QODED:针对使用经典编码技术的编码计算和解码之间的动态进行优化的量子代码
- 批准号:
2106189 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CIF: Small: Learning To Correct Errors
CIF:小:学习纠正错误
- 批准号:
2100013 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
ECCS/CCSS: Neural Network Nonlinear Iterative LDPC Decoders with Guaranteed Error Performance and Fast Convergence
ECCS/CCSS:具有保证错误性能和快速收敛的神经网络非线性迭代 LDPC 解码器
- 批准号:
2027844 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Medium: Iterative Quantum LDPC Decoders
CIF:中:迭代量子 LDPC 解码器
- 批准号:
1855879 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Small CIF: Coding and Detection for Two-dimensional Magnetic Recording Systems
Small CIF:二维磁记录系统的编码和检测
- 批准号:
1314147 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Medium: Iterative Decoding Beyond Belief Propagation
CIF:中:超越置信传播的迭代解码
- 批准号:
0963726 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
TF08: Error Correction Algorithms for DNA Repair: Inference, Analysis, and Intervention
TF08:DNA 修复纠错算法:推理、分析和干预
- 批准号:
0830245 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Constrained and Error-Control Coding for DNA Computers
合作研究:DNA 计算机的约束和错误控制编码
- 批准号:
0514921 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
ITR: Forward Error Correction Codes and Protocols for Next-Generation Optical Networks
ITR:下一代光网络的前向纠错码和协议
- 批准号:
0325979 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Phase Averaged Deferred Correction for Multi-Timescale Systems
多时间尺度系统的相位平均延迟校正
- 批准号:
EP/Y032624/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
FET: III: Small: Innovative Approaches for Bias Correction and Systems-level Analysis in Integrated Multi-omics Data
FET:III:小型:集成多组学数据中的偏差校正和系统级分析的创新方法
- 批准号:
2203236 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Next generation fault detection, evaluation, and correction algorithms for HVAC control systems
适用于 HVAC 控制系统的下一代故障检测、评估和校正算法
- 批准号:
576809-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alliance Grants
S&AS: FND: Real-Time Self-Diagnosis and Correction in Linear and Nonlinear Control of Autonomous Systems Using Encoded State Space Error Signatures
S
- 批准号:
1723997 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Super-resolution and aberration correction in arbitrary optical systems using an eigenmode approach and their applications
使用本征模方法进行任意光学系统的超分辨率和像差校正及其应用
- 批准号:
442871-2013 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Developing an Event Prediction and Correction Framework for Microbial Management in Drinking Water Systems.
开发饮用水系统微生物管理的事件预测和纠正框架。
- 批准号:
EP/K035886/1 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Synchrotron Computed Tomography Harmonic Correction for Biomedical Systems
生物医学系统的同步加速器计算机断层扫描谐波校正
- 批准号:
433012-2012 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
Automatic correction of hardware systems based on stream processing
基于流处理的硬件系统自动校正
- 批准号:
24650019 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of Spherical Aberration Correction Technique for Electron Optical Systems using an Annular Objective Pupil and an Auxiliary Proximity Electrode
使用环形物镜光瞳和辅助接近电极开发电子光学系统球差校正技术
- 批准号:
24360020 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Adiabatic Quantum Computing in Open Systems: Methodology, Performance, and Error Correction
合作研究:开放系统中的绝热量子计算:方法、性能和纠错
- 批准号:
0726439 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




