CAREER: A Study of the Radiative Effects of Cloud Shadows on the Dynamics of Long-Lived Convective Storms

职业:云影对长寿命对流风暴动力学的辐射效应研究

基本信息

  • 批准号:
    0644533
  • 负责人:
  • 金额:
    $ 74.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-05-01 至 2014-04-30
  • 项目状态:
    已结题

项目摘要

Under this CAREER award, the Principal Investigator will investigate the radiative effects of cirrus anvils and their shadows on the dynamics of long-lived convective storms. The dynamical impacts will be examined using an advanced, research, three-dimensional cloud model with ice physics and radiation, in addition to a soil model and surface fluxes, which couple the radiative forcing at the surface to the overlying storm inflow within the boundary layer.The educational component is two-fold: (1) development of a suite of interactive numerical models for use in a variety of courses for undergraduate and graduate students; (2) creation of an interactive museum exhibit that showcases atmospheric research on severe storms and fully immerses visitors in the discovery process that defines science. Intellectual Merit: Despite significant advances in computing power, radiative effects generally have been ignored in past three-dimensional numerical modeling studies of the dynamics of convective storms. The exclusion often has been justified on the assumption that radiative effects are unimportant on the time scales that convection typically persists, and using the argument that convection is "dynamically " rather than "radiatively driven." Even though the above arguments are true for many storms, significant low-level cooling (e.g., temperature deficits exceeding 5 K) is occasionally observed beneath the expansive anvils of long-lived convective storms. Idealized numerical simulations that have represented this effect in a crude manner strongly suggest that a potentially important forcing is being missed when such substantial low-level temperature modifications are not captured. Scale analysis indicates that the temperature gradients associated with anvil shadows can be large enough to generate significant baroclinic horizontal vorticity, which can be converted to vertical vorticity, and hence storm rotation, through tilting by an updraft. On the other hand, cooling beneath the optically-thick cloud of a convective storm reduces convective available potential energy and increases the convective inhibition. The proposed research will investigate the effects-which quite possibly compete with one another-of radiatively-induced storm inflow modifications, e.g., baroclinic horizontal vorticity generation, stability modifications, etc. Specifically, the research will address the following questions: . What are the possible dynamical effects on convective storms from radiative transfer processes associated with anvils? . What are the magnitudes of these dynamical effects? . On what time scales are the radiative effects important? . Under which environmental conditions (e.g., sounding and hodograph characteristics, surface characteristics, time of day) do radiative effects exert the largest influence on convective storm evolution? Broader Impacts: The research has ramifications in a potentially broad range of areas, such as (i) warm season precipitation forecasting; (ii) the representation of cloud radiative transfer processes in large-scale models; and (iii) the development or intensification of rotation within severe storms, which are sensitive to variations in horizontal vorticity present in the inflow. The suite of simple, web-based numerical models in the educational component will augment students' classroom instruction by way of simulation-based laboratory exercises designed to promote creativity and critical thinking. Such exercises will have the utmost flexibility, allowing students to formulate and test their own hypotheses and perhaps even expose areas ripe for future rigorous scientific research. The atmospheric sciences museum exhibit will provide a highly interactive, "hands on" learning experience to a target audience that ranges from elementary school to adult.
根据这项职业奖,首席研究员将研究卷云砧及其阴影对长寿命对流风暴动力学的辐射影响。 除了土壤模型和地表通量外,还将使用一个先进的、研究性的、带有冰物理学和辐射的三维云模型来检查动力学影响,该模型将地表的辐射强迫与边界层内的上覆风暴流入耦合起来。(1)开发一套交互式数值模型,用于本科生和研究生的各种课程;(2)创建一个互动的博物馆展览,展示对严重风暴的大气研究,并使游客完全沉浸在定义科学的发现过程中。智力优势:尽管在计算能力上有了显著的进步,但在过去的对流风暴动力学的三维数值模拟研究中,辐射效应通常被忽略。 这种排除通常是合理的假设,即辐射效应在对流持续存在的时间尺度上是不重要的,并使用对流是“动态”而不是“辐射驱动”的论点。“尽管上述论点对许多风暴都是正确的,但显著的低空冷却(例如,温度赤字超过5 K),偶尔会观察到下长寿命对流风暴的膨胀砧。 理想化的数值模拟,代表了这种效果,在一个粗略的方式强烈建议,一个潜在的重要强迫被错过时,这种实质性的低层温度的修改没有被捕获。 尺度分析表明,与砧影相关的温度梯度可以足够大,以产生显着的斜压水平涡度,这可以转换为垂直涡度,因此风暴旋转,通过倾斜的上升气流。 另一方面,在对流风暴的光学厚云下的冷却减少了对流可用位能,并增加了对流抑制。 拟议的研究将调查辐射引起的风暴流入量修改的影响-很可能相互竞争,例如,斜压水平涡度生成、稳定性修正等。具体而言,研究将解决以下问题:与铁砧有关的辐射传输过程对对流风暴可能有什么动力学影响?.这些动力学效应的大小是多少?.在什么时间尺度上辐射效应是重要的?.在何种环境条件下(例如,探空和速矢线特征、地面特征、一天中的时间)辐射效应对对流风暴演变的影响最大吗?更广泛的影响:这项研究在一系列潜在的领域产生了影响,例如:(一)暖季降水预报;(二)大尺度模式中云辐射传输过程的表示;以及(三)严重风暴内旋转的发展或加强,这对流入中水平涡度的变化很敏感。教育部分中的一套简单的基于网络的数值模型将通过旨在促进创造力和批判性思维的基于模拟的实验室练习来增强学生的课堂教学。 这种练习将具有最大的灵活性,允许学生制定和测试自己的假设,甚至可能揭示未来严格的科学研究成熟的领域。 大气科学博物馆展览将为从小学到成人的目标受众提供高度互动的“动手”学习体验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Markowski其他文献

Paul Markowski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Markowski', 18)}}的其他基金

Collaborative Research: Improving Our Understanding of Supercells from Convection Initiation to Tornadogenesis via Innovative Observations, Simulations, and Analysis Techniques
合作研究:通过创新的观测、模拟和分析技术提高我们对超级单体从对流引发到龙卷风发生的理解
  • 批准号:
    2150792
  • 财政年份:
    2022
  • 资助金额:
    $ 74.76万
  • 项目类别:
    Standard Grant
Improving our understanding of vorticity development in supercells through novel thermodynamic observations and an improved treatment of the near-surface layer in simulations
通过新颖的热力学观测和改进模拟中近地表层的处理,提高我们对超级单体中涡度发展的理解
  • 批准号:
    1821885
  • 财政年份:
    2018
  • 资助金额:
    $ 74.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Concentrating Vorticity Near the Ground: Investigation of Supercell Rear-Flank Precipitation, Vorticity Generation, and Transport Processes
合作研究:近地面集中涡度:超级单体后侧降水、涡度产生和传输过程的研究
  • 批准号:
    0338661
  • 财政年份:
    2004
  • 资助金额:
    $ 74.76万
  • 项目类别:
    Continuing Grant
Studies of the Internal Structure and Dynamics of Convective Weather Systems
对流天气系统的内部结构和动力学研究
  • 批准号:
    0133506
  • 财政年份:
    2002
  • 资助金额:
    $ 74.76万
  • 项目类别:
    Continuing Grant
Collaborative Research: Measurement and Analysis of the Preconvective Boundary Layer and Convection Initiation during International H2O Project (IHOP)
合作研究:国际H2O项目(IHOP)期间对流前边界层和对流引发的测量和分析
  • 批准号:
    0130307
  • 财政年份:
    2002
  • 资助金额:
    $ 74.76万
  • 项目类别:
    Continuing Grant

相似国自然基金

相似海外基金

An Experimental and Computational Study of the Radiative Thermal Conductivity of Upper Mantle Minerals and Rocks
上地幔矿物和岩石辐射热导率的实验和计算研究
  • 批准号:
    2148727
  • 财政年份:
    2022
  • 资助金额:
    $ 74.76万
  • 项目类别:
    Continuing Grant
Study of interference of the radiative transfer induced by local and global structures of biological tissues and development of theoretical calculations of the light scattering properties
研究生物组织局部和整体结构引起的辐射传输的干扰以及光散射特性理论计算的发展
  • 批准号:
    18K13694
  • 财政年份:
    2018
  • 资助金额:
    $ 74.76万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study of driving mechanism of black hole jets by general relativistic radiative transfer and VLBI observations
广义相对论辐射传输与VLBI观测研究黑洞喷流驱动机制
  • 批准号:
    18K03656
  • 财政年份:
    2018
  • 资助金额:
    $ 74.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Study of Radiative Effects on Turbulent High Energy Density Plasmas
湍流高能量密度等离子体的辐射效应研究
  • 批准号:
    1707260
  • 财政年份:
    2017
  • 资助金额:
    $ 74.76万
  • 项目类别:
    Continuing Grant
Study of computation system for 2-loop radiative correction
二环辐射校正计算系统的研究
  • 批准号:
    15H03668
  • 财政年份:
    2015
  • 资助金额:
    $ 74.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theoretical study on radiative and non-radiative decay passways in solution
溶液中辐射和非辐射衰变通道的理论研究
  • 批准号:
    15K05385
  • 财政年份:
    2015
  • 资助金额:
    $ 74.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of polarization with radiative transfer theory and application to star/planet-forming regions
辐射传输理论偏振研究及其在恒星/行星形成区域的应用
  • 批准号:
    26887030
  • 财政年份:
    2014
  • 资助金额:
    $ 74.76万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Theoretical study on dynamics of 12C synthesis through radiative capture reactions of three alpha-particles
三种α粒子辐射捕获反应合成12C动力学的理论研究
  • 批准号:
    24540261
  • 财政年份:
    2012
  • 资助金额:
    $ 74.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on radiative and microphysical properties of mixed-phase clouds in the arctic
北极混合相云的辐射和微物理特性研究
  • 批准号:
    21403006
  • 财政年份:
    2009
  • 资助金额:
    $ 74.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of radiative decay of negatively charged excited hyperons
带负电激发超子的辐射衰变研究
  • 批准号:
    20540293
  • 财政年份:
    2008
  • 资助金额:
    $ 74.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了