CAREER: High Performance Computational Method for Stochastic Design Problems
职业:随机设计问题的高性能计算方法
基本信息
- 批准号:0645035
- 负责人:
- 金额:$ 44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-15 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The importance of uncertainty analysis and stochastic modelinghas received increasing amount of attention in recent years,especially from the Computational Mathematics society.Extensive research efforts have been devoted to uncertaintyquantification and stochastic computations, and novel numerical methods have been developed to efficiently deal with large and complex systems with uncertainty. Although these methods have been demonstrated to be highly effective in predicting the behavior of complex stochastic systems, the design industry has not taken full advantage of these developments, and the design procedures in many disciplines remain almost exclusively deterministic. The research objective of this proposal is to develop new mathematical and numerical methods for multidisciplinary design problems with uncertain inputs, with an emphasis on the efficiency and accuracyof the new methods so that they are applicable to large-scale, realistic engineering applications. This objective will be attained through three major efforts: (1) employing rigorous mathematical theory to form a unified framework that allows one to conduct systematical analysis and error estimates; (2) employing the state-of-the-art stochastic algorithms to construct a set of high performance design algorithms for two major classes of uncertainty-based design: robust design and reliability design;and (3) extending the new methods to large-scale complex systemsand developing fast and parallel solvers.Quantifying uncertainty is of paramount importance in almost all aspects of science and engineering. It is of particular significance in modern-day strategic planning and risk management where decisions are made in a constantly changing landscape with many unknown factors. Examples such as epidemic control, aircraft optimization under extreme conditions, optimal response following natural disasters, etc, are abundant. Such problems are essentially design and optimization in a complex and multidisciplinary environment, with substantial uncertainty interacting in a highly nonlinear fashion in the systems and parameters. While simulation based design tools continue to be advanced at rapid rates, little attention has been paid to incorporation of state-of-the-art mathematical techniques in stochastic analysis and uncertainty quantification. The traditional approaches, e.g., those by using safety factors to accommodate uncertainty in a gross manner, are becoming increasingly obsolete and often result in overly conservative decisions. This project is valuable for its multi-disciplinary influence, its fundamental contribution to uncertainty-based design problems, and more importantly, its high performance stochastic design algorithms the provide better and sharper analysis for decision makers. The project will unite a collection of uncertainty-based design techniques scattered over various engineering applications with the cutting-edge stochastic computation framework.It is a true synergy of Computational Mathematics tools and practicaldemands, and can be extended to a large class of design and optimizationproblems.
近年来,不确定性分析和随机建模的重要性受到了越来越多的关注,特别是来自计算数学界。在不确定性量化和随机计算方面进行了大量的研究,并开发了新的数值方法来有效地处理具有不确定性的大型复杂系统。尽管这些方法已被证明在预测复杂随机系统的行为方面非常有效,但设计行业并没有充分利用这些发展,许多学科的设计过程几乎完全是确定性的。本提案的研究目标是为具有不确定输入的多学科设计问题开发新的数学和数值方法,重点是新方法的效率和准确性,以便它们适用于大规模,现实的工程应用。这一目标将通过三个主要努力来实现:(1)采用严格的数学理论来形成一个统一的框架,使人们能够进行系统的分析和误差估计;(2)采用最先进的随机算法构建了一套高性能设计算法,分别针对鲁棒设计和可靠性设计两大类不确定性设计;(3)将新方法推广到大型复杂系统,开发快速并行求解器。在科学和工程的几乎所有方面,不确定性的量化都是至关重要的。它在现代战略规划和风险管理中具有特别重要的意义,其中决策是在不断变化的景观中做出的,具有许多未知因素。疫情控制、极端条件下的飞机优化、自然灾害后的最优响应等例子比比皆是。这类问题本质上是在复杂和多学科环境下的设计和优化,在系统和参数中以高度非线性的方式相互作用着大量的不确定性。虽然基于仿真的设计工具继续以快速的速度发展,但在随机分析和不确定性量化中结合最先进的数学技术却很少受到关注。传统的方法,例如,通过使用安全因素以粗略的方式适应不确定性的方法,正变得越来越过时,并且经常导致过于保守的决定。这个项目的价值在于它的多学科影响,它对基于不确定性的设计问题的基本贡献,更重要的是,它的高性能随机设计算法为决策者提供了更好、更清晰的分析。该项目将把分散在各种工程应用中的基于不确定性的设计技术与前沿的随机计算框架结合起来。它是计算数学工具和实际需求的真正协同作用,可以扩展到一大类设计和优化问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dongbin Xiu其他文献
Data-Driven Modeling of Partially Observed Biological Systems
部分观测生物系统的数据驱动建模
- DOI:
10.1007/s42967-023-00317-2 - 发表时间:
2024 - 期刊:
- 影响因子:1.6
- 作者:
Wei;Ching;Dongbin Xiu - 通讯作者:
Dongbin Xiu
Uncertainty quantification on the macroscopic properties of heterogeneous porous media
非均质多孔介质宏观特性的不确定性量化
- DOI:
10.1103/physreve.98.033306 - 发表时间:
2018-09 - 期刊:
- 影响因子:2.4
- 作者:
Peng Wang;Huali Chen;Xuhui Meng;Xin Jiang;Dongbin Xiu;Xiaofan Yang - 通讯作者:
Xiaofan Yang
A Well-Balanced Stochastic Galerkin Method for Scalar Hyperbolic Balance Laws with Random Inputs
具有随机输入的标量双曲平衡律的良好平衡随机伽辽金方法
- DOI:
10.1007/s10915-015-0124-2 - 发表时间:
2016-06 - 期刊:
- 影响因子:2.5
- 作者:
Shi Jin;Dongbin Xiu;Xueyu Zhu - 通讯作者:
Xueyu Zhu
A new method for an old topic: Efficient and reliable estimation of material T bulk modulus
老话题的新方法:高效可靠地估算材料 T 体积模量
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.3
- 作者:
Peng Wang;Yi Qin;Ming Cheng;Guanjie Wang;Dongbin Xiu;Zhimei Sun - 通讯作者:
Zhimei Sun
Modeling Unknown Stochastic Dynamical System Subject to External Excitation
模拟受外部激励影响的未知随机动力系统
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuan Chen;Dongbin Xiu - 通讯作者:
Dongbin Xiu
Dongbin Xiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dongbin Xiu', 18)}}的其他基金
Efficient Algorithms for Uncertainty Quantification in High Dimensions
高维不确定性量化的高效算法
- 批准号:
1656459 - 财政年份:2016
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Efficient Algorithms for Uncertainty Quantification in High Dimensions
高维不确定性量化的高效算法
- 批准号:
1418771 - 财政年份:2014
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
GV: Small: Collaborative Research: Analysis and Visualization of Stochastic Simulation Solutions
GV:小型:协作研究:随机仿真解决方案的分析和可视化
- 批准号:
0914447 - 财政年份:2009
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Research on Computational Methods in High Performance Computing and Their Applications to Computational Sciences
REU 网站:高性能计算中的计算方法及其在计算科学中的应用研究
- 批准号:
2348884 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Building a computational infrastructure for disclosing performance information of molecular dynamics software
构建用于公开分子动力学软件性能信息的计算基础设施
- 批准号:
23K11328 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding functional performance in bird skulls: advanced computational modelling to investigate cranial biomechanics and kinesis
了解鸟类头骨的功能表现:研究颅骨生物力学和运动的先进计算模型
- 批准号:
BB/X014479/1 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Research Grant
Next-generation high-performance linear solver for future computational science and engineering
用于未来计算科学和工程的下一代高性能线性求解器
- 批准号:
23H00462 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Equipment: MRI: Track 1 Acquisition of Current Hardware to Enhance Computational Research on the ELSA High Performance Computing Cluster at The College of New Jersey
设备: MRI:第一轨道采购当前硬件,以增强新泽西学院 ELSA 高性能计算集群的计算研究
- 批准号:
2320244 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of a high-performance computer cluster for computational biology
设备: MRI:轨道 1 获取用于计算生物学的高性能计算机集群
- 批准号:
2320846 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Development of High-Performance Finite-Difference Based Computational Models for Electromagnetic Field Assessment
开发基于有限差分的高性能电磁场评估计算模型
- 批准号:
568474-2022 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Postdoctoral Fellowships
MRI: Acquisition of a High-Performance Computational System for OAK Region to Enable Computing and Data Driven Discovery
MRI:为 OAK 地区采购高性能计算系统,以实现计算和数据驱动的发现
- 批准号:
2216084 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Computational approaches to engineer enzymes for improved cold water performance
设计酶以提高冷水性能的计算方法
- 批准号:
BB/X511304/1 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Training Grant
Developing a next-level computational modeling framework to predict the long-term performance of old buildings
开发下一级计算建模框架来预测旧建筑的长期性能
- 批准号:
576903-2022 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Alliance Grants