Mechanistic, Structural and Evolutionary Basis for Phenylpropanoid Metabolism
苯丙类代谢的机制、结构和进化基础
基本信息
- 批准号:0645794
- 负责人:
- 金额:$ 59.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The phenylpropanoid biosynthetic pathway of bacteria and plants allows one to study evolutionary change in enzymes and metabolic pathways underlying the emergence and rapid expansion of chemical diversity in living systems. Ultimately these studies lead to a better understanding of the chemical, structural and evolutionary tenets governing biodiversity and biocomplexity at a chemical level. Sessile organisms such as plants and microbes acquired and evolved specialized biosynthetic networks classified as secondary metabolic pathways, the output of which are regio- and stereo-chemically complex small molecule natural products including phenylpropanoid-derived metabolites. These chemicals of specialized metabolism serve as chemical languages in ecosystems and impart a species-specific chemical "signature" on the parent organism. The means by which organisms acquire, improve and exploit diverse metabolic systems to generate a rich repertoire of chemically complex natural products play key roles in the rapid expansion of many ecosystems, and therefore, hold incredible adaptive significance for the diversity of life. While seemingly insignificant, specialized metabolites often serve as key mediators of intra- and interspecies interactions resulting in speciation, survival and ecological homeostasis. Under the evolutionary restraints of chemically established adaptation, diverse molecular changes associated with specialized metabolism are often preserved genetically in a particular species' genome and are discerned at a functional and structural level. These often ecotype-specific genomes are the direct result of the increased fitness of host organisms "chemically" adapted to specific ecological niches. Therefore, these specialized metabolic pathways and their "chemical output" present us with a rich evolutionary record of where biosynthetic pathways, natural chemicals and biosynthetic enzymes have been (vestigial biochemical traits), what adaptive advantages these complex enzymatic systems hold in the present (emergent function), and ultimately where these pathways may be heading in the future (functional plasticity). The overarching goal of this research is to map the adaptive molecular changes that have occurred in the phenylpropanoid biosynthetic pathway as these enzyme networks emerged and subsequently evolved from their ancestral roots in primary metabolism billions of years ago. To accomplish these goals, the work involves a multidisciplinary approach including synthetic chemistry, protein x-ray crystallography, site-specific and combinatorial mutagenesis, kinetic assays and research using the reference plant Arabidopsis thaliana to answer unresolved, recently discovered and unexpected evolutionary aspects of the general phenylpropanoid biosynthetic pathway.Broader ImpactsThe research activities integrate the training of high school students (San Diego area), teachers (Tucson area), undergraduate students (University of California, San Diego) and PhD level scientists in state of the art multidisciplinary research including structural biology, chemistry, biochemistry and evolutionary biology. The research fully integrates these students in the discovery process that includes co-authorship on scientific publications. Summers will involve a 9-week training program for teachers in the Tucson, Arizona area as part of a collaborative program with Dr. David Gang at the University of Arizona. The work will then be extended to the classroom during the normal school year through the preparation of protein crystallization kits for high school science classes that also incorporate protein samples chosen to potentially address fundamental questions about protein evolution in three dimensions. Given this, it is hoped that the students will become vested in the scientific method that will ultimately result in the class's co-authorship on scientific publications. Finally, at least twice yearly, the PI participates in an evening seminar series for the general public called "A Taste of Discovery". The PI's most recent presentation focused on the evolution of chemical biosynthesis in plants, why this research is critical for terrestrial life and how mankind exploits plants and plant-based chemicals for health and nutrition.
细菌和植物的苯丙烷生物合成途径使人们能够研究生命系统中化学多样性出现和快速扩张背后的酶和代谢途径的进化变化。最终,这些研究有助于更好地理解在化学层面上管理生物多样性和生物复杂性的化学、结构和进化原则。固着生物,如植物和微生物,获得和进化了被归类为次生代谢途径的专门生物合成网络,其输出是区域和立体化学复杂的小分子天然产物,包括苯丙烷衍生的代谢物。这些专门化新陈代谢的化学物质在生态系统中充当化学语言,并在母体上赋予物种特有的化学“签名”。生物体获取、改进和利用各种代谢系统以产生丰富的化学复杂天然产物的手段,在许多生态系统的快速扩张中发挥着关键作用,因此,对生命的多样性具有令人难以置信的适应意义。虽然看似微不足道,但专门的代谢物往往是物种内和物种间相互作用的关键媒介,导致物种形成、生存和生态动态平衡。在化学适应的进化约束下,与专门化代谢相关的各种分子变化通常被遗传地保存在特定物种的基因组中,并在功能和结构水平上被识别。这些通常是生态型特有的基因组是宿主生物在化学上适应特定生态位的适应性增加的直接结果。因此,这些专门的代谢途径及其“化学产出”为我们提供了丰富的进化记录,包括生物合成途径、天然化学物质和生物合成酶曾经在哪里(残留的生化特征),这些复杂的酶系统在现在拥有什么适应优势(新出现的功能),以及最终这些途径可能在未来走向哪里(功能可塑性)。这项研究的首要目标是绘制随着这些酶网络的出现并随后从数十亿年前原始代谢的祖先根进化而来的苯丙烷类生物合成途径中发生的适应性分子变化。为了实现这些目标,这项工作涉及多学科方法,包括合成化学、蛋白质X射线结晶学、定点和组合突变、动力学分析和使用参考植物拟南芥进行研究,以回答一般苯丙烷生物合成途径中尚未解决的、最近发现的和意想不到的进化方面。广泛的影响研究活动整合了对高中生(圣地亚哥地区)、教师(图森地区)、本科生(加州大学圣地亚哥分校)和博士水平的科学家在最先进的多学科研究水平的培训,包括结构生物学、化学、生物化学和进化生物学。这项研究将这些学生完全融入到发现过程中,其中包括科学出版物的共同作者。萨默斯将为亚利桑那州图森地区的教师提供为期9周的培训计划,这是与亚利桑那大学大卫·冈博士合作计划的一部分。然后,这项工作将在正常学年通过为高中科学课程准备蛋白质结晶试剂盒而扩展到教室,其中还包括选择的蛋白质样本,以潜在地解决关于蛋白质进化的三维基本问题。有鉴于此,希望学生们能够掌握科学方法,这最终将导致这门课成为科学出版物的共同作者。最后,国际和平协会每年至少参加两次为公众举办的名为“探索的味道”的晚间系列研讨会。PI的最新报告集中在植物中化学生物合成的演变,为什么这项研究对陆地生命至关重要,以及人类如何利用植物和以植物为基础的化学品来实现健康和营养。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Noel其他文献
Joseph Noel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Noel', 18)}}的其他基金
Collaborative Research: Structural, Functional and Evolutionary Basis for the Utilization of a Quinone Methide-Like Mechanism in the Biosynthesis of Plant Specialized Metabolites
合作研究:在植物特化代谢物生物合成中利用醌甲基化物样机制的结构、功能和进化基础
- 批准号:
0718064 - 财政年份:2007
- 资助金额:
$ 59.22万 - 项目类别:
Continuing Grant
Arabidopsis 2010 Project: Collaborative Research on the Functions of the SABATH Family Methyltransferases
拟南芥2010项目:SABATH家族甲基转移酶功能的合作研究
- 批准号:
0312449 - 财政年份:2003
- 资助金额:
$ 59.22万 - 项目类别:
Continuing Grant
Structural and Functional Analysis of the Plant Phenylpropanoid Biosynthetic Pathway
植物苯丙素生物合成途径的结构和功能分析
- 批准号:
0236027 - 财政年份:2003
- 资助金额:
$ 59.22万 - 项目类别:
Continuing Grant
Structural and Functional Analysis of the Plant Phenylpropanoid Biosynthetic Pathway
植物苯丙素生物合成途径的结构和功能分析
- 批准号:
9982586 - 财政年份:2000
- 资助金额:
$ 59.22万 - 项目类别:
Continuing Grant
Postdoctoral Research Fellowships in Chemistry
化学博士后研究奖学金
- 批准号:
9002631 - 财政年份:1990
- 资助金额:
$ 59.22万 - 项目类别:
Fellowship Award
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Genome organization, evolutionary structural variation, and gene regulation in immunity
免疫中的基因组组织、进化结构变异和基因调控
- 批准号:
10662147 - 财政年份:2023
- 资助金额:
$ 59.22万 - 项目类别:
Bidirectional Evolutionary Structural Optimization for Transient Problems
瞬态问题的双向进化结构优化
- 批准号:
DP230103180 - 财政年份:2023
- 资助金额:
$ 59.22万 - 项目类别:
Discovery Projects
Structural and evolutionary basis for insertion unidirectionality in RNA-guided DNA transposition systems
RNA引导的DNA转座系统中插入单向性的结构和进化基础
- 批准号:
10752287 - 财政年份:2023
- 资助金额:
$ 59.22万 - 项目类别:
COLLABORATIVE RESEARCH: Integrative Approaches to the Turtle Body Plan: Evolutionary Origins of Structural Complexity in an Enigmatic Lineage
合作研究:海龟身体计划的综合方法:神秘谱系中结构复杂性的进化起源
- 批准号:
1947025 - 财政年份:2020
- 资助金额:
$ 59.22万 - 项目类别:
Standard Grant
CAREER: Advancing evolutionary genomics and eukaryotic biodiversity research through accurate, scalable, and flexible frameworks for structural genome annotation
职业:通过准确、可扩展且灵活的结构基因组注释框架推进进化基因组学和真核生物多样性研究
- 批准号:
1943371 - 财政年份:2020
- 资助金额:
$ 59.22万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: Integrative Approaches to the Turtle Body Plan: Evolutionary Origins of Structural Complexity in an Enigmatic Lineage
合作研究:海龟身体计划的综合方法:神秘谱系中结构复杂性的进化起源
- 批准号:
1947001 - 财政年份:2020
- 资助金额:
$ 59.22万 - 项目类别:
Standard Grant
Evolutionary and functional consequences of structural genetic variation in Drosophila
果蝇结构遗传变异的进化和功能后果
- 批准号:
10729933 - 财政年份:2019
- 资助金额:
$ 59.22万 - 项目类别:
Evolutionary and functional consequences of structural genetic variation in Drosophila
果蝇结构遗传变异的进化和功能后果
- 批准号:
10369357 - 财政年份:2019
- 资助金额:
$ 59.22万 - 项目类别:
Structural analysis of large protein complexes based on the novel evolutionary indicator
基于新型进化指标的大型蛋白质复合物的结构分析
- 批准号:
17K07321 - 财政年份:2017
- 资助金额:
$ 59.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SFB 1232: From colored states to evolutionary structural materials
SFB 1232:从有色态到进化结构材料
- 批准号:
276397488 - 财政年份:2016
- 资助金额:
$ 59.22万 - 项目类别:
Collaborative Research Centres