Conference on Curves and Abelian Varieties
曲线和阿贝尔簇会议
基本信息
- 批准号:0646265
- 负责人:
- 金额:$ 2.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-12-15 至 2007-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The grant will support a conference on "Curves and Abelian Varieties"at the University of Georgia at the end of March 2007. The aim of the conference is to discuss recent developments in the field, including those relating to the Schottky problem of characterizing jacobians among all principally polarized abelian varieties; as well as on characterizing other classical classes of abelian varieties such as Prym varieties and intermediate jacobians. The connections with functorial compactifications of moduli spaces of abelian varieties andK3 surfaces will be adressed as well. The speakers will include many internationally renowned experts, such as Arnaud Beauville (Nice,France), Herbert Clemens (Ohio State), Robert Friedman (Columbia, NYC), Phillip A. Griffiths (IAS, Princeton), Herbert Lange (Erlangen, Germany), Alessandro Verra (Rome 3), Igor Krichever (Columbia, NYC) and Claire Voisin (Paris 7).Algebraic geometry studies solutions of systems of polynomial equations, which are basic to many fields of mathematics and its applications to natural sciences and engeneering. Curves and abelian varieties are two fundamental classes of solutions whose rich interactions has fascinated mathematicians since the time of Riemann.The conference will bring together leading international researchers, junior mathematicians and graduate students to review the recent progress in the field and to encourage new developments.
这笔赠款将支持2007年3月底在格鲁吉亚大学举行的“曲线和阿贝尔变种“会议。会议的目的是讨论该领域的最新发展,包括那些有关的肖特基问题的特点雅可比人之间的所有主要极化阿贝尔品种;以及对其他经典类的特点阿贝尔品种,如Prym品种和中间雅可比人。本文还讨论了交换簇的模空间和K_3曲面与函子紧化的关系。演讲嘉宾将包括多位国际知名专家,如Arnaud Beauville(法国尼斯)、赫伯特克莱门斯(俄亥俄州)、罗伯特弗里德曼(哥伦比亚,纽约)、菲利普A。格里菲思(IAS,普林斯顿),赫伯特兰格(埃尔兰根,德国),亚历山德罗韦拉(罗马3),伊戈尔克里切弗(哥伦比亚,纽约)和克莱尔沃辛(巴黎7)。代数几何研究多项式方程组的解,这是数学的许多领域及其在自然科学和工程中的应用的基础。曲线和阿贝尔簇是两类基本的解,它们之间丰富的相互作用从黎曼时代起就吸引着数学家们。会议将汇集国际领先的研究人员、初级数学家和研究生,回顾这一领域的最新进展,并鼓励新的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valery Alexeev其他文献
Kappa classes on KSBA spaces
KSBA 空间的 Kappa 课程
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Valery Alexeev - 通讯作者:
Valery Alexeev
Japanese Cities and Urbanization IGU-Commission
日本城市和城市化 IGU 委员会
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Valery Alexeev;Christopher Hacon;Yujiro Kawamata;佐藤 博樹(中村圭介・連合総合生活開発研究所編);小林 敬一・小澤 敬;Kazuhiko YAGO;Masateru Hino - 通讯作者:
Masateru Hino
Termination of (many) 4-dimensional log flips
终止(多次)4 维日志翻转
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Valery Alexeev;Christopher Hacon;Yujiro Kawamata - 通讯作者:
Yujiro Kawamata
Valery Alexeev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valery Alexeev', 18)}}的其他基金
Georgia Algebraic Geometry Symposium
乔治亚代数几何研讨会
- 批准号:
1902154 - 财政年份:2019
- 资助金额:
$ 2.57万 - 项目类别:
Continuing Grant
Degenerations and Moduli in Algebraic Geometry
代数几何中的简并和模
- 批准号:
1603604 - 财政年份:2016
- 资助金额:
$ 2.57万 - 项目类别:
Continuing Grant
Georgia Algebraic Geometry Symposium
乔治亚代数几何研讨会
- 批准号:
1522813 - 财政年份:2015
- 资助金额:
$ 2.57万 - 项目类别:
Continuing Grant
Higher-Dimensional Analogs of Stable Curves
稳定曲线的高维模拟
- 批准号:
0401795 - 财政年份:2004
- 资助金额:
$ 2.57万 - 项目类别:
Continuing Grant
Structure of Functorial Compactification of Moduli of Abelian Varieties and their Relatives
阿贝尔簇及其近缘模的函数紧化结构
- 批准号:
0101280 - 财政年份:2001
- 资助金额:
$ 2.57万 - 项目类别:
Continuing Grant
Moduli Spaces of Toric and Abelian Pairs
环面和阿贝尔对的模空间
- 批准号:
9870062 - 财政年份:1998
- 资助金额:
$ 2.57万 - 项目类别:
Standard Grant
相似海外基金
The Frobenius action on curves and abelian varieties
曲线和阿贝尔簇上的弗罗贝尼乌斯作用
- 批准号:
2302511 - 财政年份:2023
- 资助金额:
$ 2.57万 - 项目类别:
Standard Grant
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
- 批准号:
155635-2013 - 财政年份:2018
- 资助金额:
$ 2.57万 - 项目类别:
Discovery Grants Program - Individual
Stratifications of the moduli space of abelian varieties and that of curves
阿贝尔簇的模空间的分层和曲线的模空间的分层
- 批准号:
17K05196 - 财政年份:2017
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
- 批准号:
155635-2013 - 财政年份:2017
- 资助金额:
$ 2.57万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic geometry of the moduli spaces of algebraic curves and abelian varieties, and its applications
代数曲线和阿贝尔簇模空间的算术几何及其应用
- 批准号:
17K05179 - 财政年份:2017
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
- 批准号:
155635-2013 - 财政年份:2015
- 资助金额:
$ 2.57万 - 项目类别:
Discovery Grants Program - Individual
Study of algebraic curves, K3 surfaces and Abelian varieties
代数曲线、K3曲面和阿贝尔簇的研究
- 批准号:
15K04815 - 财政年份:2015
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
- 批准号:
155635-2013 - 财政年份:2014
- 资助金额:
$ 2.57万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
- 批准号:
155635-2013 - 财政年份:2013
- 资助金额:
$ 2.57万 - 项目类别:
Discovery Grants Program - Individual