Georgia Algebraic Geometry Symposium

乔治亚代数几何研讨会

基本信息

项目摘要

Following the example of the previous three successful Georgia Algebraic Geometry Symposia at the University of Georgia, this award will support participation in a cycle of three conferences rotating among major research universities in Georgia: Emory, University of Georgia, and Georgia Tech. The first conference will take place at Emory University on October 16-18, 2015. The second conference will take place at the University of Georgia in October 2016, and the third at Georgia Tech in October 2017. The aim is to sustain and grow collaborations between mathematicians in the Southeast, and to nurture a new and diverse generation of students and postdocs, by providing a regular series of exciting mathematical activities and a forum to meet peers and attend talks by leading experts in the field. Algebraic geometry and arithmetic geometry are some of the most established and active areas of mathematics and have deep connections with many other subjects. In addition to their central role in mathematics, they have important applications in encryption, physics, engineering, biology, and a host of other sciences. The conferences will aim at presenting the latest advances in these fields to a wide audience of local researchers, students, and postdocs. Symposium web site: http://research.franklin.uga.edu/gags/
继前三个成功的格鲁吉亚代数几何研讨会在格鲁吉亚大学的例子,这个奖项将支持在三个会议的循环中旋转在格鲁吉亚的主要研究型大学的参与:埃默里大学,格鲁吉亚大学,和格鲁吉亚技术。第一次会议将于2015年10月16日至18日在埃默里大学举行。第二次会议将于2016年10月在格鲁吉亚大学举行,第三次会议将于2017年10月在格鲁吉亚理工学院举行。 其目的是维持和发展东南部数学家之间的合作,并通过提供一系列令人兴奋的数学活动和论坛,以满足同行和参加该领域领先专家的会谈,培养新一代的学生和博士后。代数几何和算术几何是数学中最成熟和最活跃的领域,与许多其他学科有着深刻的联系。除了在数学中的核心作用外,它们在加密、物理、工程、生物和许多其他科学中也有重要的应用。会议将旨在向当地研究人员,学生和博士后的广泛受众介绍这些领域的最新进展。研讨会网址:http://research.franklin.uga.edu/gags/

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Valery Alexeev其他文献

Kappa classes on KSBA spaces
KSBA 空间的 Kappa 课程
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Valery Alexeev
  • 通讯作者:
    Valery Alexeev
Japanese Cities and Urbanization IGU-Commission
日本城市和城市化 IGU 委员会
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Valery Alexeev;Christopher Hacon;Yujiro Kawamata;佐藤 博樹(中村圭介・連合総合生活開発研究所編);小林 敬一・小澤 敬;Kazuhiko YAGO;Masateru Hino
  • 通讯作者:
    Masateru Hino
Termination of (many) 4-dimensional log flips
终止(多次)4 维日志翻转
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Valery Alexeev;Christopher Hacon;Yujiro Kawamata
  • 通讯作者:
    Yujiro Kawamata

Valery Alexeev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Valery Alexeev', 18)}}的其他基金

Degenerations and Moduli Spaces
退化和模空间
  • 批准号:
    2201222
  • 财政年份:
    2022
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Georgia Algebraic Geometry Symposium
乔治亚代数几何研讨会
  • 批准号:
    1902154
  • 财政年份:
    2019
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Continuing Grant
Compact Moduli of Algebraic Varieties
代数簇的紧模
  • 批准号:
    1902157
  • 财政年份:
    2019
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Degenerations and Moduli in Algebraic Geometry
代数几何中的简并和模
  • 批准号:
    1603604
  • 财政年份:
    2016
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Continuing Grant
Degenerations and moduli
退化和模量
  • 批准号:
    1200726
  • 财政年份:
    2012
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Continuing Grant
Degenerations and moduli
退化和模量
  • 批准号:
    0901309
  • 财政年份:
    2009
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Continuing Grant
Conference on Curves and Abelian Varieties
曲线和阿贝尔簇会议
  • 批准号:
    0646265
  • 财政年份:
    2006
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Higher-Dimensional Analogs of Stable Curves
稳定曲线的高维模拟
  • 批准号:
    0401795
  • 财政年份:
    2004
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Continuing Grant
Structure of Functorial Compactification of Moduli of Abelian Varieties and their Relatives
阿贝尔簇及其近缘模的函数紧化结构
  • 批准号:
    0101280
  • 财政年份:
    2001
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Continuing Grant
Moduli Spaces of Toric and Abelian Pairs
环面和阿贝尔对的模空间
  • 批准号:
    9870062
  • 财政年份:
    1998
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Conference: Texas Algebraic Geometry Symposium (TAGS) 2024-2026
会议:德克萨斯代数几何研讨会 (TAGS) 2024-2026
  • 批准号:
    2349244
  • 财政年份:
    2024
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Continuing Grant
Algebraic Geometry and Strings
代数几何和弦
  • 批准号:
    2401422
  • 财政年份:
    2024
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Continuing Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
  • 批准号:
    2412921
  • 财政年份:
    2024
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
  • 批准号:
    EP/W014882/2
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Research Grant
Conference: AGNES Summer School in Algebraic Geometry
会议:AGNES 代数几何暑期学校
  • 批准号:
    2312088
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Conference: Higher dimensional algebraic geometry
会议:高维代数几何
  • 批准号:
    2327037
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
  • 批准号:
    2234736
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Continuing Grant
Algebraic Geometry of Hitchin Integrable Systems and Beyond
希钦可积系统及其他代数几何
  • 批准号:
    2301474
  • 财政年份:
    2023
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了