Mildly Explosive Time Series and Economic Bubbles

轻度爆炸性时间序列和经济泡沫

基本信息

  • 批准号:
    0647086
  • 负责人:
  • 金额:
    $ 20.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-05-01 至 2011-04-30
  • 项目状态:
    已结题

项目摘要

The proposed research seeks to extend present econometric methodology of unit roots and cointegration to mildly integrated and mildly explosive data. Such time series were introduced in recent work by the PI and Tassos Magdalinos and have roots that belong to larger neighborhoods of unity than conventional local to unity roots. The new framework includes commonly occuring practical cases with roots such as rho = 0.95 and helps to bridge discontinuities in the asymptotic theory between stationary, local to unity and explosive models. The project will build on these ideas, develop a limit theory for multivariate regression with mildly integrated and mildly explosive regressors, and initiate a program of related empirical applications. In particular, the research will provide a framework for generalizing standard cointegrating regressions and for linking these regressions to simultaneous equations models with stationary regressors. Conventional approaches to estimating cointegrating regressions fail to produce even asymptotically valid inference procedures when the regressors are nearly integrated, and substantial size distortions can occur in econometric testing. The new framework will enable a general approach to inference that resolves this difficulty and permits mild integration in the regressors, making it suitable for general practical application.Mildly explosive regressions also offer intriguing new possibilities, including the use of central limit arguments. The project will explore multivariate systems and validate test procedures by invariance principles under a wide range of weakly dependent innovations, distributions, and initial conditions. These procedures will be useful in dealing with economic data that undergo periods of extreme behavior like financial bubbles, and cases where there are explosively cointegrated regressors embodying contamination effects across variables. Models of periodically collapsing bubbles will also be analyzed, some extensions to existing models that have more realistic sample path properties will be provided, and procedures for econometric testing and inference in the presence of bubbles will be developed.Broader Impact: Extreme movements in economic variables can have a wide socio-economic impact, producing swings in individual wealth and financial security, misallocating capital, and threatening the credibility of economic institutions. The methods will contribute to our understanding of these economic issues by developing new models of economic bubbles, new ways of detecting bubble activity, and new procedures for statistical inference in the presence of explosive behavior and for estimating contamination across variables. The project's intellectual merit is in its scientific contribution to the analysis of mildly integrated and mildly explosive data, its extension of cointegration methodology to cover such data, and its empirical contribution to the study of economic and financial bubbles. The investigator will assist the research training of graduate students of economics through joint and directed work on these topics.
拟议的研究旨在扩大目前的计量经济学方法的单位根和协整,温和的综合和温和的爆炸性数据。这种时间序列在PI和Tassos Magdalinos最近的工作中引入,并且具有属于比传统的局部到单位根更大的单位邻域的根。新的框架包括经常发生的实际情况下,根,如ρ = 0.95,并有助于弥合不连续性的渐近理论之间的平稳,局部团结和爆炸模型。该项目将建立在这些想法的基础上,开发一个极限理论的多元回归与轻度集成和轻度爆炸回归,并启动相关的经验应用程序。特别是,该研究将提供一个框架,推广标准协整回归,并将这些回归与平稳回归的联立方程模型。 传统的方法估计协整回归甚至不能产生渐近有效的推理程序时,回归几乎是一体的,并在计量经济学测试中可能会发生相当大的规模失真。新的框架将使一般的推理方法,解决了这个困难,并允许温和的整合回归,使其适合一般的实际应用。温和的爆炸回归也提供了有趣的新的可能性,包括使用中心极限参数。该项目将探索多变量系统,并在广泛的弱相关新息,分布和初始条件下通过不变性原理验证测试程序。这些程序将是有用的,在处理经济数据,经历了极端的行为,如金融泡沫时期,并有爆炸性的协整回归体现跨变量的污染效应的情况下。还将分析周期性崩溃的泡沫模型,将提供对现有模型的一些扩展,使其具有更真实的样本路径特性,并将开发在泡沫存在的情况下进行计量经济学检验和推断的程序。经济变量的极端变动会产生广泛的社会经济影响,造成个人财富和金融安全的波动,资本分配不当,并威胁到经济机构的信誉。这些方法将有助于我们理解这些经济问题,通过开发新的经济泡沫模型,检测泡沫活动的新方法,以及在存在爆炸性行为的情况下进行统计推断和估计变量污染的新程序。该项目的智力价值在于其对温和整合和温和爆炸性数据分析的科学贡献,其协整方法的扩展以涵盖此类数据,以及其对经济和金融泡沫研究的实证贡献。调查员将通过对这些主题的联合和指导工作,协助经济学研究生的研究培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Phillips其他文献

Small Polyps at Endoluminal CT Colonography Are Often Seen But Ignored by Radiologists.
腔内 CT 结肠镜检查中经常看到小息肉,但被放射科医生忽视。
  • DOI:
    10.2214/ajr.14.14093
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Plumb;T. Fanshawe;Peter Phillips;S. Mallett;S. Taylor;E. Helbren;D. Boone;S. Halligan
  • 通讯作者:
    S. Halligan
Identifying and preventing fatigue in digital breast tomosynthesis
数字乳房断层合成中识别和预防疲劳
Multivarite Areal Aggregated Crime Analysis through Cross Correlation
通过互相关进行多变量区域聚合犯罪分析
Climate change and economic activity: Evidence from US states
气候变化与经济活动:来自美国各州的证据
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kamiar Mohaddes;Ryan N. C. Ng;M. Pesaran;M. Raissi;Jui‐Chung Yang;Tiago Cavalcanti;Francis X. Diebold;Christopher Hajzler;Stéphane Hallegatte;Zeina Hasna;John Hassler;Per Krusell Matthew E. Kahn;Miguel Molico;Peter Phillips;Margit Reischer;Ron P. Smith;R. Tol;Carolyn A. Wilkins
  • 通讯作者:
    Carolyn A. Wilkins
Crossing the 'flaky bridge' - the initial transitory experiences of qualifying as a paramedic: a mixed-methods study.
跨越“片状桥梁”——获得护理人员资格的最初短暂经历:一项混合方法研究。
  • DOI:
    10.29045/14784726.2023.6.8.1.18
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Phillips;Steve Trenoweth
  • 通讯作者:
    Steve Trenoweth

Peter Phillips的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Phillips', 18)}}的其他基金

Function Space Trend Determination using Machine Learning
使用机器学习确定函数空间趋势
  • 批准号:
    1850860
  • 财政年份:
    2019
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Crisis Econometrics and High Dimensional Nonstationary Regression
危机计量经济学和高维非平稳回归
  • 批准号:
    1258258
  • 财政年份:
    2013
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Econometric Analysis of the Financial Crisis
金融危机的计量经济学分析
  • 批准号:
    0956687
  • 财政年份:
    2010
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
Trending Economic Time Series and Panels
趋势经济时间序列和面板
  • 批准号:
    0414254
  • 财政年份:
    2004
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
Trends And Empirical Econometric Limits
趋势和实证计量经济学极限
  • 批准号:
    0092509
  • 财政年份:
    2001
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
Nonstationary Economic Time Series and Panel Data
非平稳经济时间序列和面板数据
  • 批准号:
    9730295
  • 财政年份:
    1998
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
Bayesian Model Evaluation and Prediction of Economic Time Series
经济时间序列的贝叶斯模型评估与预测
  • 批准号:
    9422922
  • 财政年份:
    1995
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
U.S.- Austria Cooperative Research on Asymptotic Bayesian Analysis and Order Selection
美奥渐近贝叶斯分析与阶次选择合作研究
  • 批准号:
    9215099
  • 财政年份:
    1993
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Standard Grant
Modelling Economic Time Series Under A Bayesian Frame of Reference
贝叶斯参考系下的经济时间序列建模
  • 批准号:
    9122142
  • 财政年份:
    1992
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
Estimating Long Run Economic Equilibrium
估计长期经济均衡
  • 批准号:
    8821180
  • 财政年份:
    1989
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant

相似海外基金

Constraints on the tempo and magnitude of explosive volcanism: facilitating long-term ash fall hazard assessments
对爆发性火山活动的速度和强度的限制:促进长期火山灰坠落危险评估
  • 批准号:
    MR/Y011767/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Fellowship
Collaborative Research: SHINE--Exploring Reconnection-Driven Solar Explosive Events in Different Regimes through Modeling and Observation
合作研究:SHINE——通过建模和观测探索不同状态下重新连接驱动的太阳爆炸事件
  • 批准号:
    2301338
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Continuing Grant
Study of explosive transients with UV light
用紫外光研究爆炸瞬变
  • 批准号:
    23H01214
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel tools for dating explosive volcanic eruptions in the critical window
用于确定关键窗口内火山喷发时间的新工具
  • 批准号:
    DP230103085
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Discovery Projects
Compressive Subsurface Radar Imaging: fast and smart detection of buried explosive threats
压缩式地下雷达成像:快速、智能地检测埋藏的爆炸物威胁
  • 批准号:
    EP/X022951/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Fellowship
Explosive Astrophysics from Siding Spring Observatory
赛丁斯普林天文台的爆炸天体物理学
  • 批准号:
    LE230100063
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Psychophysiological Correlates of Cognitive Bias Modification in Intermittent Explosive Disorder
间歇性爆发性障碍认知偏差修正的心理生理相关性
  • 批准号:
    10677927
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
Numerical modeling of conduit flow to reproduce preparation and initiation processes of explosive eruptions
管道流动的数值模拟,以重现爆炸性喷发的准备和引发过程
  • 批准号:
    23K03535
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Illuminating the dark Universe with explosive astrophysical events
用爆炸性天体物理事件照亮黑暗的宇宙
  • 批准号:
    DE230100055
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Discovery Early Career Researcher Award
A phylogenomic approach to reveal the explosive adaptive radiation of wood Sonchus in Canaries
用系统发育学方法揭示加那利群岛木桑属植物的爆炸性适应性辐射
  • 批准号:
    22KF0187
  • 财政年份:
    2023
  • 资助金额:
    $ 20.02万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了