Collaborative Research: Seismic Structure and Evolution of Oceanic Crust along the Juan de Fuca Ridge and its Flanks

合作研究:胡安德富卡海岭及其侧翼的地震结构和洋壳演化

基本信息

  • 批准号:
    0648303
  • 负责人:
  • 金额:
    $ 17.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-04-01 至 2011-03-31
  • 项目状态:
    已结题

项目摘要

Hydrothermal circulation within the Earth's oceanic crust is a fundamental process that affects the chemical and physical exchange between the solid Earth and the oceans. Sea water penetrates down the ocean crust several kilometers through cracks, becomes heated up as it encounters magma reservoirs and hot rocks, reacts with the surrounding rocks, and rises back to the seafloor carrying minerals that are expelled into the oceans and used as nutrients by the vast biological communities that form deep-sea ecosystems. In addition, the interaction between the hydrothermal fluids and the rocks affects the chemical and physical properties of the lithosphere, therefore having important implications for processes like the formation of deep-sea mineral deposits. Within this general framework, this project will address the issue of what are the physical impact, depth extent, and horizontal spatial scales of hydrothermal alteration in the oceanic crust during its formation along a mid-ocean ridge, and its subsequent evolution and maturation.In particular, we want to understand (1) what is the relationship between high-temperature hydrothermal convection in a mid-ocean ridge and the underlying structure (location of magma reservoirs, porosity and permeability of the crust, etc.)? (2) How deep does the alteration penetrate as the crust matures? (3) Are there fine-scale variations in crustal structure related to topographic controls on low-temperature hydrothermal flow control? (4) What are the links between hydrothermal cooling and the observed variations in the structure of the oceanic crust near a mid-ocean ridge?Hydrothermal alteration has a significant impact on the speed at which seismic waves propagate through the crust (seismic velocity). Thus measuring in detail the seismic velocity of the upper ~1-2 km of the crust can give us a wealth of information about the processes described above. To answer the above-mentioned questions we will analyze marine seismic reflection data collected in 2002 as part of a NSF-funded project along the Juan de Fuca mid-ocean ridge and tectonic plate in the northeast Pacific, off the coast of Oregon, Washington, and British Columbia. Seismic waves generated from the research vessel M. Ewing were recorded by sensors located in a 6-km-long streamer towed by the ship. By measuring the time that waves traveled through the Earth's crust from the sources to the receivers, as well as their amplitude changes along their paths, we will be able to construct high resolution images of the elastic properties of the crust using state-of-the-art computing techniques known as travel-time and waveform seismic tomography. The resulting seismic tomography images will then be interpreted in terms alteration due to hydrothermal convection. We will also use gravity measurements to infer the density structure of the ocean crust, and together with the seismic observations, investigate the impact of hydrothermal cooling on the apparent variability of crustal thickness.Understanding the causes and consequences of hydrothermal circulation and alteration that takes place under the world's oceans requires a multidisciplinary approach, including biological, geochemical, geological, and geophysical studies, as well as numerical computer models and in-situ and remote observations. Much of what we know to date about hydrothermal circulation within oceanic lithosphere comes from studies at the Juan de Fuca ridge and tectonic plate during the past decades. This study will fill a gap by quantifying the impact and scales of hydrothermal alteration on the seismic structure of the lithosphere, and relate it to geological and environmental variables such as topography and sedimentation history.The objectives of this project are directly linked to the science goals of, and will benefit, several large initiatives and ongoing programs within Ocean Science. Our studies to characterize the structure beneath hydrothermal vent sites are directly linked to objectives of the NSF RIDGE-2000 program at the Endeavour ISS. CanNeptune and the Regional Cabled Observatory component of the Ocean Observatory Initiative will place a fiber optic cable spanning the Juan de Fuca plate to facilitate long-term monitoring of ridge axis and flank processes. The tomographic studies of axial structure of this project will provide new constraints on physical context at appropriate scales for these monitoring studies. Our ridge flank work will benefit plate-scale experiments envisioned here under ORION, and hydrogeologic objectives of ongoing ODP-IODP studies. This project will be part of the Ph.D. research of two graduate students, who will be trained in marine seismic reflection and tomography techniques. This will contribute to the development of a workforce with expertise in these methods, benefiting both the US academic research and industry communities.
地球海壳中的热液循环是一个基本过程,它会影响地球与海洋之间的化学和物理交换。海水通过裂缝穿透了几公里的海角,当岩浆储层和热岩石与周围的岩石反应时,它被加热,并升至载有矿物质的海底矿物质,并被驱散到海洋中,并被形成深海生态系统的庞大生物学社区用作营养。另外,水热流体与岩石之间的相互作用会影响岩石圈的化学和物理特性,因此对诸如形成深海矿物沉积物之类的过程具有重要意义。在这个一般框架内,该项目将解决沿海皮沿海层沿着海洋山脊形成过程中的水热改变的物理影响,深度和水平空间尺度的问题储层,孔隙率和地壳的渗透性等)? (2)随着外壳的成熟,这种变化的深度有多深? (3)与低温水热控制控制的地形控制相关的地壳结构中是否存在细尺度变化? (4)水热冷却与海洋中山脊附近海洋壳结构的变化之间有什么联系?水热改变对地震波通过地壳传播(地震速度)的速度产生了重大影响。因此,详细测量地壳上部〜1-2 km的地震速度可以为我们提供有关上述过程的大量信息。为了回答上述问题,我们将分析2002年收集的海洋地震反射数据,这是NSF资助的项目的一部分,该项目沿Juan de Fuca Mid-ocean Ridge和东北太平洋,俄勒冈州,华盛顿州和不列颠哥伦比亚省的东北太平洋,东北太平洋地区的构造板和构造板。从研究船M.尤因产生的地震波是由位于船上拖曳6公里长的彩带中的传感器记录的。通过测量波浪从源到接收器的地壳中的波浪以及它们沿其路径的幅度变化的时间,我们将能够使用最先进的计算技术来构建外壳弹性特性的高分辨率图像。然后,将由于水热对流而用术语来解释所得的地震层析成像图像。我们还将使用重力测量来推断海角的密度结构,并与地震观测一起研究水热冷却对地壳厚度的明显变化的影响。理解水热循环的原因和后果以及在世界海洋中发生的,包括多种阶段的循环,包括多种阶段,包括地理学方法,地理学,地球,地球,地球循环,地球循环和变化。数值计算机模型以及原位和远程观察。迄今为止,关于海洋岩石圈中热液循环的大部分内容来自过去几十年来胡安·德福卡山脊和构造板的研究。这项研究将通过量化水热改变对岩石圈的地震结构的影响和尺度来填补空白,并将其与地质和环境变量(例如地形和沉积历史记录)相关联。该项目的目标与科学目标直接相关,并将受益于海洋科学中的一些大型计划和正在进行的计划。我们的研究表征了水热通风位置下的结构,直接与ISS努力ISS的NSF Ridge-2000计划的目标有关。海洋天文台倡议的罐装和区域电缆天文台组件将放置横跨胡安·德福卡板的光纤电缆,以促进对山脊轴和侧面工艺的长期监测。该项目轴向结构的层析成像研究将在适当尺度上为这些监测研究提供新的限制。我们的山脊侧面的工作将使在Orion下设想的板规规模实验以及正在进行的ODP-IODP研究的水文地质目标。该项目将是博士学位的一部分。对两名研究生的研究,他们将接受海洋地震反思和断层扫描技术的培训。这将有助于在这些方法方面具有专业知识的劳动力发展,从而使美国的学术研究和行业社区受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suzanne Carbotte其他文献

Suzanne Carbotte的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suzanne Carbotte', 18)}}的其他基金

Collaborative Research: A new subsurface framework for the Cascadia subduction zone derived from integrated analyses of the CASIE21 long-offset multi-channel seismic experiment
合作研究:根据 CASIE21 长偏移距多道地震实验的综合分析得出卡斯卡迪亚俯冲带的新地下框架
  • 批准号:
    2217465
  • 财政年份:
    2022
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
R2R Data Management Services for the Academic Fleet: 2020-2024
学术舰队的 R2R 数据管理服务:2020-2024
  • 批准号:
    1949707
  • 财政年份:
    2019
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant
Supporting Antarctic Research with Ongoing Operations and Development of the USAP-DC Project Catalog and Data Repository
通过 USAP-DC 项目目录和数据存储库的持续运营和开发支持南极研究
  • 批准号:
    1936530
  • 财政年份:
    2019
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant
Supporting Marine Geoscience Research with ongoing Growth of the Global Multi-Resolution Topography Synthesis and Maintenance of GeoMapApp
通过不断发展的全球多分辨率地形合成和 GeoMapApp 维护来支持海洋地球科学研究
  • 批准号:
    1929655
  • 财政年份:
    2019
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Illuminating the Cascadia plate boundary zone and accretionary wedge with a regional-scale ultra-long offset multi-channel seismic study
合作研究:通过区域尺度超长偏移多道地震研究阐明卡斯卡迪亚板块边界带和增生楔
  • 批准号:
    1827452
  • 财政年份:
    2018
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Inferences on Cascadia Deformation Front and Plate Interface Properties from Advanced Studies of Active Source Seismic Data
合作研究:从主动源地震数据的高级研究中推断卡斯卡迪亚变形前缘和板块界面特性
  • 批准号:
    1657737
  • 财政年份:
    2017
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
Rolling Deck to Repository (R2R) 2014-2019
将 Deck 滚动到存储库 (R2R) 2014-2019
  • 批准号:
    1447797
  • 财政年份:
    2014
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: SAVI: Leveraging the Ocean Data Interoperability Platform (ODIP) for International Marine Science
EAGER:合作研究:SAVI:利用海洋数据互操作平台 (ODIP) 促进国际海洋科学
  • 批准号:
    1341929
  • 财政年份:
    2013
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evolution and hydration of the Juan de Fuca crust and uppermost mantle: a plate-scale seismic investigation from ridge to trench
合作研究:胡安德富卡地壳和上地幔的演化和水化:从洋脊到海沟的板块规模地震调查
  • 批准号:
    1029411
  • 财政年份:
    2012
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Rolling Deck to Repository (R2R): Transforming the Academic Fleet Into an Integrated Global Observing System
合作研究:滚动甲板到存储库(R2R):将学术舰队转变为综合的全球观测系统
  • 批准号:
    0947877
  • 财政年份:
    2009
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant

相似国自然基金

摇摆桥梁三维动力学行为及地震响应规律研究
  • 批准号:
    52308494
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
考虑多相多介质耦合作用的地下水位变化场地非线性地震响应机理研究
  • 批准号:
    52378474
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于物理规律自适应表征的地震数据智能编码采集方法研究
  • 批准号:
    42374222
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
冰岩斜坡地震非协调变形与拉剪破裂机制研究
  • 批准号:
    42377194
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
考虑应力扰动的汶川-茂县断层地震循环数值模拟研究
  • 批准号:
    42304057
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
  • 批准号:
    2244696
  • 财政年份:
    2023
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
Collaborative Research: High-velocity and long-displacement stick-slips: Experimental analogs of earthquake rupture and the seismic cycle
合作研究:高速和长位移粘滑运动:地震破裂和地震周期的实验模拟
  • 批准号:
    2240418
  • 财政年份:
    2023
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant
NNA Research: Collaborative Research: Arctic, Climate, and Earthquakes (ACE): Seismic Resilience and Adaptation of Arctic Infrastructure and Social Systems amid Changing Climate
NNA 研究:合作研究:北极、气候和地震 (ACE):气候变化中北极基础设施和社会系统的抗震能力和适应
  • 批准号:
    2220221
  • 财政年份:
    2023
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
International collaborative research on the viscosity of the oceanic asthenosphere through marine geophysical observations and geodynamic modeling
通过海洋地球物理观测和地球动力学建模对海洋软流圈粘度进行国际合作研究
  • 批准号:
    23H00138
  • 财政年份:
    2023
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
NNA Research: Collaborative Research: Arctic, Climate, and Earthquakes (ACE): Seismic Resilience and Adaptation of Arctic Infrastructure and Social Systems amid Changing Climate
NNA 研究:合作研究:北极、气候和地震 (ACE):气候变化中北极基础设施和社会系统的抗震能力和适应
  • 批准号:
    2220219
  • 财政年份:
    2023
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了