Inference on Extremes in Economic Regression Analysis
经济回归分析中的极值推断
基本信息
- 批准号:0649388
- 负责人:
- 金额:$ 7.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-02-01 至 2008-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of the project is to change dramatically the methods and software available for studying extreme phenomena in economic regression analysis. More specifically, the project develops feasible and practical inference methods for extremal quantile regressions - the models that describe how regressors X affect the outcome of interest Y in the tails. For example, extremal quantile regressions describe how mothers' socio-economic characteristics (smoking, health-care, education) affect the very low quantiles of birthweights. The project makes it possible to make inferences about such regression relationships. The project develops inference methods for parametric and non-parametric extremal quantile regression models and public software (based on the freeware environment) that implements these methods. The project is strictly focused on the following three parts:(1) Inference methods in linear extremal quantile regression,(2) Inference methods in nonparametric extremal quantile regression,(3) Software package (free and publicly available) which implements (1) and (2). The software will be available as a documented R-package with help files and a vignette. The vignette is the document that will contain a short description of the methods, followed by tutorial examples using interesting data sets.Broader Impact of the Proposal: As stated above, one of the purposes of the project is to produce public software that implements inference methods for extremal quantile regression. After the software package is available, any practitioner will be able to download and install the package from R-website www.r-project.org and use it in the analysis of any data-set, aided by help files and tutorial examples. It should be mentioned that the reason for choosing R as a programming environment is that it serves as a common, free statistical environment widely used by researchers (econometricians, statisticians, biometricians) and practitioners. This characterizes the broader impact of the proposed project. The project will also have direct educational impact by involving help of two students: one undergraduate student and one graduate student. The graduate student will be a coauthor, and both students will be co-authors and co-developers of the software package.
该项目的目的是极大地改变可用于研究经济回归分析中极端现象的方法和软件。更具体地说,该项目为极端分位数回归开发了可行和实用的推理方法-描述回归变量X如何影响尾部感兴趣的Y结果的模型。例如,极端分位数回归描述了母亲的社会经济特征(吸烟、医疗保健、教育)如何影响出生体重的极低分位数。该项目使得对这种回归关系进行推断成为可能。该项目开发了参数和非参数极值分位数回归模型的推断方法,以及实现这些方法的公共软件(基于免费软件环境)。(1)线性极值分位数回归的推断方法,(2)非参数极值分位数回归的推断方法,(3)实现(1)和(2)的软件包(免费和公开)。该软件将作为一个有文档记录的R包提供,其中包含帮助文件和小插曲。该文件将包含方法的简短描述,然后是使用有趣的数据集的教程示例。提案的广泛影响:如上所述,该项目的目的之一是生成实现极值分位数回归的推理方法的公共软件。在该软件包可用后,任何从业者都可以从R-WebSite www.r-project t.org下载和安装该软件包,并在帮助文件和教程示例的帮助下将其用于任何数据集的分析。值得一提的是,之所以选择R作为编程环境,是因为它是研究人员(计量经济学家、统计学家、生物计量学家)和从业人员广泛使用的通用、免费的统计环境。这是拟议项目的更广泛影响的特征。该项目还将通过两名学生的帮助产生直接的教育影响:一名本科生和一名研究生。研究生将是该软件包的共同作者,两名学生将是该软件包的共同作者和共同开发人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Chernozhukov其他文献
Gender Differences in Career Choice of College Students in Japan
日本大学生职业选择的性别差异
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Victor Chernozhukov;Juan Carlos Escanciano;Hidehiko Ichimura;Whitney K. Newey;James M. Robins;Hidehiko Ichimura;Hidehiko Ichimura;Hidehiko Ichimura;Emiko Usui;Emiko Usui;Emiko Usui;Emiko Usui;Emiko Usui;奥村綱雄 - 通讯作者:
奥村綱雄
パネル化した国勢調査から見えるもの
从面板普查中可以看出什么
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Victor Chernozhukov;Juan Carlos Escanciano;Hidehiko Ichimura;Whitney K. Newey;James M. Robins;Daiji Kawaguchi;Hidehiko Ichimura;市村 英彦 - 通讯作者:
市村 英彦
Progress of Regional Cooperation and Integration
区域合作与一体化进展
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Victor Chernozhukov;Juan Carlos Escanciano;Hidehiko Ichimura;Whitney K. Newey;James M. Robins;Daiji Kawaguchi;Hidehiko Ichimura;市村 英彦;Emiko Usui;奥村綱雄;川口大司;Daiji Kawaguchi;Daiji Kawaguchi;川口大司;Yasuyuki Sawada;Yasuyuki Sawada - 通讯作者:
Yasuyuki Sawada
Life-cycle health expenditure pattern in Japan
日本生命周期卫生支出模式
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Victor Chernozhukov;Juan Carlos Escanciano;Hidehiko Ichimura;Whitney K. Newey;James M. Robins;Hidehiko Ichimura;Hidehiko Ichimura;Hidehiko Ichimura - 通讯作者:
Hidehiko Ichimura
基調講演 : アジアの都市の成長と包摂に向けて
主题演讲:迈向亚洲城市的增长和包容
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Victor Chernozhukov;Juan Carlos Escanciano;Hidehiko Ichimura;Whitney K. Newey;James M. Robins;Daiji Kawaguchi;Hidehiko Ichimura;市村 英彦;Emiko Usui;奥村綱雄;川口大司;Daiji Kawaguchi;Daiji Kawaguchi;川口大司;Yasuyuki Sawada;Yasuyuki Sawada;Yasuyuki Sawada - 通讯作者:
Yasuyuki Sawada
Victor Chernozhukov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor Chernozhukov', 18)}}的其他基金
Collaborative Research: Inference Methods for Machine Learning and High-Dimensional Data in Policy Evaluation and Structural Economic Models
合作研究:政策评估和结构经济模型中机器学习和高维数据的推理方法
- 批准号:
1559172 - 财政年份:2016
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
Collaborative Research: Nonparametric Distributional and Quantile Methods in Econometrics
合作研究:计量经济学中的非参数分布和分位数方法
- 批准号:
1061841 - 财政年份:2011
- 资助金额:
$ 7.21万 - 项目类别:
Continuing Grant
Collaborative Research: Research on Distributional and Quantile Methods in Econometrics
合作研究:计量经济学中的分布和分位数方法研究
- 批准号:
0752823 - 财政年份:2008
- 资助金额:
$ 7.21万 - 项目类别:
Continuing Grant
Collaborative Research: A Markov Chain Approach to Classical Estimation
协作研究:经典估计的马尔可夫链方法
- 批准号:
0241810 - 财政年份:2003
- 资助金额:
$ 7.21万 - 项目类别:
Continuing grant
Quasi-Bayesian Alternative to M-Estimation
M 估计的准贝叶斯替代方案
- 批准号:
0214317 - 财政年份:2002
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
相似海外基金
Macroeconomic and Financial Modelling in an Era of Extremes
极端时代的宏观经济和金融模型
- 批准号:
DP240101009 - 财政年份:2024
- 资助金额:
$ 7.21万 - 项目类别:
Discovery Projects
Droughts Beyond Hydro-climatological Extremes
超出水文气候极端值的干旱
- 批准号:
24K17352 - 财政年份:2024
- 资助金额:
$ 7.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
AI4PEX: Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models
AI4PEX:人工智能和机器学习,用于增强地球系统模型中过程和极值的表示
- 批准号:
10103109 - 财政年份:2024
- 资助金额:
$ 7.21万 - 项目类别:
EU-Funded
Rare Event Simulation: Protecting vital infrastructure from flood extremes
罕见事件模拟:保护重要基础设施免受极端洪水影响
- 批准号:
DP240101365 - 财政年份:2024
- 资助金额:
$ 7.21万 - 项目类别:
Discovery Projects
Designing multi-knowledge protocols to transform transboundary policies for hydroclimatic extremes(DEMO TAPE)
设计多知识协议以转变极端水文气候的跨境政策(DEMO TAPE)
- 批准号:
EP/Y036905/1 - 财政年份:2024
- 资助金额:
$ 7.21万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Adaptation to environmental extremes in a great ape
博士论文研究:类人猿对极端环境的适应
- 批准号:
2341172 - 财政年份:2024
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
Mapping the neuronal functional architecture underlying appetite control in humans at the extremes of bodyweight
绘制极端体重下人类食欲控制的神经元功能结构
- 批准号:
BB/X014207/1 - 财政年份:2024
- 资助金额:
$ 7.21万 - 项目类别:
Research Grant
Reducing Global Catastrophic Risks from Unseen Climate Extremes
减少未曾见过的极端气候带来的全球灾难性风险
- 批准号:
MR/X03450X/1 - 财政年份:2024
- 资助金额:
$ 7.21万 - 项目类别:
Fellowship
Co-developed Environmental Solutions to Mitigate the Impact of Temperature Extremes on the Health of Vulnerable Populations
共同开发环境解决方案,以减轻极端温度对弱势群体健康的影响
- 批准号:
NE/Y503241/1 - 财政年份:2024
- 资助金额:
$ 7.21万 - 项目类别:
Research Grant
Future Rainfall and Flood Extremes (FURFLEX)
未来降雨量和极端洪水 (FURFLEX)
- 批准号:
NE/Z000076/1 - 财政年份:2024
- 资助金额:
$ 7.21万 - 项目类别:
Research Grant