Conference on Differential Geometry, Mathematical Physics, and Mathematics and Society

微分几何、数学物理、数学与社会会议

基本信息

项目摘要

Abstract:StantonIn previous joint work with Kroetz the proposer constructed a specific domain for which they showed that most matrix coefficients of irreducible unitary representations of semisimple Lie groups as well as related automorphic functions have a canonical holomorphic continuation. For those representations occuring in the Plancherel density of the associated Riemannian symmetric space they used their construction to identify a natural Kahler structure on these domains. We shall attempt to enlarge the class of the unitary representations so related to complex differential geometry by studying Kahler structures on vector bundles over the previously constructed domain. The success of such a complex differential geometric formulation of parts of the unitary dual should have interesting applications to harmonic analysis. Also following up on our previous work, we shall attempt to obtain estimates on the Fourier coefficients of automorphic functions by analyzing the boundary values of their holomorphic continuation on the distinguished boundary of this domain. A different project is joint work with Slupinski in which we propose to obtain very detailed structure of the topology and differential geometry of nilpotent co-adjoint orbits of semisimple Lie groups. We have identified a class of orbits associated to 5-gradings of the corresponding Lie algebra and have substantial progress towards relating this to an extended version of conformal geometry. Possible payoff of these investigations include a compactification of the moduli space of exceptional holonomy structures on low dimensional manifolds as well as a geometric construction of representations associated to these orbits.Any complex nxn matrix may be written as a sum of two matrices where one is diagonalizable and the other is nilpotent, i.e. the matrix times itself some number of times is the zero matrix. The group of invertible matrices acts via conjugation (i.e. pre-multiply by the matrix and post-multiply by the inverse) on the vector space of all complex nxn matrices. As the sets of diagonalizable and nilpotent matrices are preserved it is reasonable to seek for each matrix a representative from these classes which is in some uniformly recognizable form. For the diagonalizable class the diagonal matrices are a natural choice and are universally used. On the other hand, the nilpotent elements have only a finite number of possibilities leading to the familiar standard form called Jordan blocks in linear algebra. These finitely many possibilities of a fixed block seem to be richer in geometric structure that those of the semisimple classes but much less understood. The proposed research is give a detailed description of the differential geometry of these class of nilpotent matrices. Somewhat surprisingly, the geometry these classes lead to include ones of current interest to theoretical physicists in string theory as well as geometers. One of the applications of our work is to present a space of such geometries, and to examine possible degenerations in the geometry as one approaches the boundary of the space. Another possible application of our description is towards identifying new geometries associated with certain algebraic structures on the space of matrices. Our approach has many points of contact with a construction proposed many years ago in relativity theory by the physicist Penrose using an algebraic object called spinors. Indeed, the use of higher dimensional spinors is critical to our investigations.
摘要:在前人与Kroetz的联合研究中,作者构造了一个特定的定义域,证明了半单李群的不可约酉表示及其相关自同构函数的大多数矩阵系数具有正则全纯延拓。对于在相关黎曼对称空间的Plancherel密度中出现的那些表示,他们使用他们的构造来识别这些域中的自然Kahler结构。我们将尝试通过在先前构造的域上研究向量束上的Kahler结构来扩大与复杂微分几何相关的酉表示的类别。这样一个复杂的微分几何公式的成功的部分的幺正对偶应该有有趣的应用于调和分析。在我们之前工作的基础上,我们将尝试通过分析自同构函数的全纯延拓在该域的区分边界上的边值来获得自同构函数的傅里叶系数的估计。另一个不同的项目是与Slupinski的联合工作,我们提出获得半单李群的幂零共伴轨道的非常详细的拓扑结构和微分几何。我们已经确定了一类与相应李代数的5阶相关联的轨道,并在将其与保形几何的扩展版本联系起来方面取得了实质性进展。这些研究的可能成果包括低维流形上异常完整结构的模空间的紧化,以及与这些轨道相关的表示的几何构造。任何复nxn矩阵都可以写成两个矩阵的和,其中一个是可对角的,另一个是幂零的,即矩阵乘以自身若干次是零矩阵。可逆矩阵群通过共轭作用(即前乘矩阵后乘逆矩阵)作用于所有复nxn矩阵的向量空间。由于可对角矩阵和幂零矩阵的集合是保留的,因此对每个矩阵从这些类中寻找一个具有一致可识别形式的代表是合理的。对于可对角化的类,对角矩阵是一种自然的选择,并且被普遍使用。另一方面,幂零元素只有有限的可能性,导致线性代数中熟悉的标准形式约旦块。这些有限多的固定块的可能性似乎在几何结构上比那些半简单类更丰富,但却很少被理解。本文给出了这类幂零矩阵的微分几何的详细描述。有些令人惊讶的是,这些课程所带来的几何学包括弦理论物理学家和几何学家目前感兴趣的几何学。我们工作的一个应用是呈现这样的几何空间,并检查在接近空间边界时几何可能的退化。我们的描述的另一个可能的应用是在矩阵空间上识别与某些代数结构相关的新几何。我们的方法与物理学家彭罗斯(Penrose)多年前在相对论中使用一种称为旋量的代数物体提出的构造有许多接触点。事实上,高维旋量的使用对我们的研究至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Stanton其他文献

Promises and perils of generative artificial intelligence: a narrative review informing its ethical and practical applications in clinical exercise physiology
  • DOI:
    10.1186/s13102-025-01182-7
  • 发表时间:
    2025-05-26
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Oscar Lederman;Alessandro Llana;James Murray;Robert Stanton;Ritesh Chugh;Darren Haywood;Amanda Burdett;Geoff Warman;Joanne Walker;Nicolas H. Hart
  • 通讯作者:
    Nicolas H. Hart
Physical Health and Health Behaviours of Australians with Psychosis
  • DOI:
    10.1007/s10597-024-01417-w
  • 发表时间:
    2025-02-20
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Brenda Happell;Chris Platania-Phung;Trentham Furness;Brett Scholz;Theo Niyonsenga;Andrew Watkins;Jackie Curtis;Zijian Wang;Supriya Khanijou;Robert Stanton
  • 通讯作者:
    Robert Stanton
Associations between ability to recognise a mental health disorder and lived experience of mental illness in an Australian sample.
  • DOI:
    10.1016/j.psychres.2018.12.098
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert Stanton;Simon Rosenbaum;Amanda Rebar
  • 通讯作者:
    Amanda Rebar
The effect of exercise on global, social, daily living and occupational functioning in people living with schizophrenia: A systematic review and meta-analysis
运动对精神分裂症患者整体、社会、日常生活和职业功能的影响:系统评价与荟萃分析
  • DOI:
    10.1016/j.schres.2023.04.012
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Nicole Korman;Robert Stanton;Anna Vecchio;Justin Chapman;Stephen Parker;Rebecca Martland;Dan Siskind;Joseph Firth
  • 通讯作者:
    Joseph Firth
The biomechanical effects of 3D printed and traditionally made foot orthoses in individuals with unilateral plantar fasciopathy and flat feet
  • DOI:
    10.1016/j.gaitpost.2022.06.006
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Malia Ho;Julie Nguyen;Luke Heales;Robert Stanton;Pui W. Kong;Crystal Kean
  • 通讯作者:
    Crystal Kean

Robert Stanton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Stanton', 18)}}的其他基金

Symplectic methods in the analysis of symmetric spaces
对称空间分析中的辛方法
  • 批准号:
    0701198
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Harmonic Analysis on Lie Groups
李群的调和分析
  • 批准号:
    0301133
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Harmonic analysis and global invariants
调和分析和全局不变量
  • 批准号:
    0070742
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Analysis On Locally Symmetric Spaces
数学科学:局部对称空间分析
  • 批准号:
    9624387
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Harmonic Analysis on Symmetric and Locally Symmetric Spaces
数学科学:对称和局部对称空间的调和分析
  • 批准号:
    9401193
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric Analysis and Spectral Invariants on Locally Symmetric Manifolds
数学科学:局部对称流形上的几何分析和谱不变量
  • 批准号:
    9104094
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Reconstructing the Paleo-Community from the Fossil Assemblage -- Comparative Analysis of Living Communities andDeath Assemblages of the Inner Texas Shelf
从化石组合重建古群落——德克萨斯内陆架生命群落和死亡组合的比较分析
  • 批准号:
    8506043
  • 财政年份:
    1986
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Comparative Analysis of Holocene Marine Fossil Assemblages and Living Communities in Texas Bays
德克萨斯州海湾全新世海洋化石组合和生物群落的比较分析
  • 批准号:
    8302339
  • 财政年份:
    1984
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Reconstructing the Paleo Community From the Fossil Assemblage--Comparative Analysis of Living Communities and Death Assemblages in Texas Bays
从化石组合重建古群落--德克萨斯海湾活群落与死亡组合的比较分析
  • 批准号:
    8021164
  • 财政年份:
    1981
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Biostratigraphy and Paleoecology of the Neogene of the Humboldt Basin
洪堡盆地新近纪的生物地层学和古生态学
  • 批准号:
    7709684
  • 财政年份:
    1978
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
  • 批准号:
    2301994
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Differential Geometry and Geometric Analysis Conference
微分几何与几何分析会议
  • 批准号:
    2200723
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CBMS Conference: Analysis, Geometry, and Partial Differential Equations in a Lower-Dimensional World
CBMS 会议:低维世界中的分析、几何和偏微分方程
  • 批准号:
    1933361
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference on Differential Geometry
微分几何会议
  • 批准号:
    1603351
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
International Conference on Several Complex Variables, Complex Geometry and Partial Differential Equations
多复变量、复几何与偏微分方程国际会议
  • 批准号:
    0901662
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
International Conference in Partial Differential Equations, Complex Analysis and Differential Geometry; Notre Dame, IN; June 11-16, 2006
偏微分方程、复分析和微分几何国际会议;
  • 批准号:
    0533431
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference on Complex Analysis, Differential Geometry, and Partial Differential Equations; May 2-6, 2005; New York, NY
复分析、微分几何和偏微分方程会议;
  • 批准号:
    0456822
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference entitled "Bundles in Complex Differential Geometry" to be held March 14-16, 1991, at Idaho State University.
题为“复微分几何中的束”的会议将于 1991 年 3 月 14 日至 16 日在爱达荷州立大学举行。
  • 批准号:
    9102883
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
U.S.- Mexico Conference on Algebraic Geometry, Topology And Differential Equations; December 10 - 14, 1984; Mexico City
美国-墨西哥代数几何、拓扑和微分方程会议;
  • 批准号:
    8414431
  • 财政年份:
    1984
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Conference on Differential Geometry; West Lafayette, Indiana; April 30--May 1, 1983
数学科学:微分几何会议;
  • 批准号:
    8301128
  • 财政年份:
    1983
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了