Harmonic Analysis on Lie Groups

李群的调和分析

基本信息

项目摘要

Abstract:StantonIn previous joint work with Kroetz the proposer constructed a specific domain for which they showed that most matrix coefficients of irreducible unitary representations of semisimple Lie groups as well as related automorphic functions have a canonical holomorphic continuation. For those representations occuring in the Plancherel density of the associated Riemannian symmetric space they used their construction to identify a natural Kahler structure on these domains. We shall attempt to enlarge the class of the unitary representations so related to complex differential geometry by studying Kahler structures on vector bundles over the previously constructed domain. The success of such a complex differential geometric formulation of parts of the unitary dual should have interesting applications to harmonic analysis. Also following up on our previous work, we shall attempt to obtain estimates on the Fourier coefficients of automorphic functions by analyzing the boundary values of their holomorphic continuation on the distinguished boundary of this domain. A different project is joint work with Slupinski in which we propose to obtain very detailed structure of the topology and differential geometry of nilpotent co-adjoint orbits of semisimple Lie groups. We have identified a class of orbits associated to 5-gradings of the corresponding Lie algebra and have substantial progress towards relating this to an extended version of conformal geometry. Possible payoff of these investigations include a compactification of the moduli space of exceptional holonomy structures on low dimensional manifolds as well as a geometric construction of representations associated to these orbits.Any complex nxn matrix may be written as a sum of two matrices where one is diagonalizable and the other is nilpotent, i.e. the matrix times itself some number of times is the zero matrix. The group of invertible matrices acts via conjugation (i.e. pre-multiply by the matrix and post-multiply by the inverse) on the vector space of all complex nxn matrices. As the sets of diagonalizable and nilpotent matrices are preserved it is reasonable to seek for each matrix a representative from these classes which is in some uniformly recognizable form. For the diagonalizable class the diagonal matrices are a natural choice and are universally used. On the other hand, the nilpotent elements have only a finite number of possibilities leading to the familiar standard form called Jordan blocks in linear algebra. These finitely many possibilities of a fixed block seem to be richer in geometric structure that those of the semisimple classes but much less understood. The proposed research is give a detailed description of the differential geometry of these class of nilpotent matrices. Somewhat surprisingly, the geometry these classes lead to include ones of current interest to theoretical physicists in string theory as well as geometers. One of the applications of our work is to present a space of such geometries, and to examine possible degenerations in the geometry as one approaches the boundary of the space. Another possible application of our description is towards identifying new geometries associated with certain algebraic structures on the space of matrices. Our approach has many points of contact with a construction proposed many years ago in relativity theory by the physicist Penrose using an algebraic object called spinors. Indeed, the use of higher dimensional spinors is critical to our investigations.
翻译后摘要:StantonIn以前的联合工作与Kroetz的提议者构建了一个特定的域,他们表明,大多数矩阵系数的不可约酉表示的半单李群以及相关的自守函数有一个典型的全纯延续。对于那些出现在相关黎曼对称空间的Plancherel密度中的表示,他们使用它们的构造来确定这些域上的自然Kahler结构。我们将试图扩大类的酉表示,所以有关复杂的微分几何的研究卡勒结构向量丛在先前构建的域。成功的这样一个复杂的微分几何制定的部分酉对偶应该有有趣的应用调和分析。在我们以前工作的基础上,我们将通过分析自守函数在该区域的特殊边界上的全纯延拓的边界值来获得自守函数的Fourier系数的估计。一个不同的项目是联合工作Slupinski在其中我们建议获得非常详细的结构拓扑和微分几何的幂零共同伴随轨道的半单李群。我们已经确定了一类与相应的李代数的5分次相关的轨道,并取得了实质性的进展,这与一个扩展版本的共形几何。这些研究的可能结果包括低维流形上特殊完整结构的模空间的紧化,以及与这些轨道相关的表示的几何构造。任何复n × n矩阵可以写为两个矩阵的和,其中一个是可对角化的,另一个是幂零的,即矩阵乘以自己的某个次数是零矩阵。可逆矩阵群通过共轭(即,预乘矩阵和后乘逆矩阵)作用于所有复nxn矩阵的向量空间。由于可对角化矩阵和幂零矩阵的集合是保持不变的,所以合理的做法是从这些类中为每个矩阵寻找一个具有某种一致可识别形式的代表。 对于可对角化类,对角矩阵是一个自然的选择,并且被普遍使用。另一方面,幂零元素只有有限的可能性,导致熟悉的标准形式称为线性代数中的Jordan块。这些固定块体的许多可能性在几何结构上似乎比那些半单类的更丰富,但理解得少得多。本文对这类幂零矩阵的微分几何进行了详细的描述。有些令人惊讶的是,这些类导致的几何包括弦理论的理论物理学家以及几何学家目前感兴趣的几何。我们的工作的应用之一是提出这样的几何空间,并检查可能退化的几何形状,因为一个接近空间的边界。我们的描述的另一个可能的应用是识别与矩阵空间上的某些代数结构相关的新几何。我们的方法与物理学家彭罗斯多年前在相对论中提出的一种构造有许多联系,该构造使用了一种称为旋量的代数对象。事实上,使用高维旋量是至关重要的,我们的调查。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Stanton其他文献

Promises and perils of generative artificial intelligence: a narrative review informing its ethical and practical applications in clinical exercise physiology
  • DOI:
    10.1186/s13102-025-01182-7
  • 发表时间:
    2025-05-26
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Oscar Lederman;Alessandro Llana;James Murray;Robert Stanton;Ritesh Chugh;Darren Haywood;Amanda Burdett;Geoff Warman;Joanne Walker;Nicolas H. Hart
  • 通讯作者:
    Nicolas H. Hart
Physical Health and Health Behaviours of Australians with Psychosis
  • DOI:
    10.1007/s10597-024-01417-w
  • 发表时间:
    2025-02-20
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Brenda Happell;Chris Platania-Phung;Trentham Furness;Brett Scholz;Theo Niyonsenga;Andrew Watkins;Jackie Curtis;Zijian Wang;Supriya Khanijou;Robert Stanton
  • 通讯作者:
    Robert Stanton
Associations between ability to recognise a mental health disorder and lived experience of mental illness in an Australian sample.
  • DOI:
    10.1016/j.psychres.2018.12.098
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert Stanton;Simon Rosenbaum;Amanda Rebar
  • 通讯作者:
    Amanda Rebar
The effect of exercise on global, social, daily living and occupational functioning in people living with schizophrenia: A systematic review and meta-analysis
运动对精神分裂症患者整体、社会、日常生活和职业功能的影响:系统评价与荟萃分析
  • DOI:
    10.1016/j.schres.2023.04.012
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Nicole Korman;Robert Stanton;Anna Vecchio;Justin Chapman;Stephen Parker;Rebecca Martland;Dan Siskind;Joseph Firth
  • 通讯作者:
    Joseph Firth
The biomechanical effects of 3D printed and traditionally made foot orthoses in individuals with unilateral plantar fasciopathy and flat feet
  • DOI:
    10.1016/j.gaitpost.2022.06.006
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Malia Ho;Julie Nguyen;Luke Heales;Robert Stanton;Pui W. Kong;Crystal Kean
  • 通讯作者:
    Crystal Kean

Robert Stanton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Stanton', 18)}}的其他基金

Symplectic methods in the analysis of symmetric spaces
对称空间分析中的辛方法
  • 批准号:
    0701198
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference on Differential Geometry, Mathematical Physics, and Mathematics and Society
微分几何、数学物理、数学与社会会议
  • 批准号:
    0649808
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Harmonic analysis and global invariants
调和分析和全局不变量
  • 批准号:
    0070742
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Analysis On Locally Symmetric Spaces
数学科学:局部对称空间分析
  • 批准号:
    9624387
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Harmonic Analysis on Symmetric and Locally Symmetric Spaces
数学科学:对称和局部对称空间的调和分析
  • 批准号:
    9401193
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric Analysis and Spectral Invariants on Locally Symmetric Manifolds
数学科学:局部对称流形上的几何分析和谱不变量
  • 批准号:
    9104094
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Reconstructing the Paleo-Community from the Fossil Assemblage -- Comparative Analysis of Living Communities andDeath Assemblages of the Inner Texas Shelf
从化石组合重建古群落——德克萨斯内陆架生命群落和死亡组合的比较分析
  • 批准号:
    8506043
  • 财政年份:
    1986
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Comparative Analysis of Holocene Marine Fossil Assemblages and Living Communities in Texas Bays
德克萨斯州海湾全新世海洋化石组合和生物群落的比较分析
  • 批准号:
    8302339
  • 财政年份:
    1984
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Reconstructing the Paleo Community From the Fossil Assemblage--Comparative Analysis of Living Communities and Death Assemblages in Texas Bays
从化石组合重建古群落--德克萨斯海湾活群落与死亡组合的比较分析
  • 批准号:
    8021164
  • 财政年份:
    1981
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Biostratigraphy and Paleoecology of the Neogene of the Humboldt Basin
洪堡盆地新近纪的生物地层学和古生态学
  • 批准号:
    7709684
  • 财政年份:
    1978
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-commutative harmonic analysis on solvable Lie groups and its applications
可解李群的非交换调和分析及其应用
  • 批准号:
    17K05280
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representations of lie groups and applications to harmonic analysis
李群的表示及其在调和分析中的应用
  • 批准号:
    399953-2010
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Harmonic analysis and Lie groups
调和分析和李群
  • 批准号:
    0402068
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Harmonic analysis on solvable Lie groups associated with constructions of induced representations
与诱导表示构造相关的可解李群的调和分析
  • 批准号:
    15540171
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Harmonic analysis on Lie groups via hypergroup convolution structures
通过超群卷积结构对李群进行调和分析
  • 批准号:
    ARC : DP0208556
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Harmonic analysis on Lie groups via hypergroup convolution structures
通过超群卷积结构对李群进行调和分析
  • 批准号:
    DP0208556
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Harmonic Analysis on Semisimple Lie Groups With Applications to Automorphic Forms
半单李群的调和分析及其在自守形式中的应用
  • 批准号:
    0097314
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Harmonic Analysis on Lie Groups and Spectral Symmetry
李群和谱对称性的调和分析
  • 批准号:
    0070607
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Harmonic analysis on solvable Lie groups and discrete subgroups
可解李群和离散子群的调和分析
  • 批准号:
    05640237
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Harmonic analysis on lie groups and probability
李群和概率的调和分析
  • 批准号:
    5372-1989
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了