Mathematical Sciences: Analysis On Locally Symmetric Spaces
数学科学:局部对称空间分析
基本信息
- 批准号:9624387
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-07-01 至 1999-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Stanton DMS-9624387 Stanton will continue his investigation of spectral invariants associated to elliptic differential operators in various settings of homogeneous and locally symmetric spaces. In particular, he shall examine a formula for the holomorphic torsion of a holomorphic vector bundle over a locally symmetric space, obtained in earlier work, in order to isolate in it the contribution from the R-class defined by Bismut and Gillet-Soule. He will attempt to extend his earlier work on locally symmetric spaces, in which he related torsion to special values of geometric zeta functions, to a class of compact, Kaehler, homogeneous spaces. For the class of quaternionic-Kaehler symmetric and locally symmetric spaces he will seek a new spectral invariant, and he will attempt to develop an associated geometric zeta function to detect this invariant. In a different direction of research, he will continue his investigation of various topological properties of real flag manifolds using geometric representation theory. Following upon the success of the index theorem in the 60's to provide an analytic framework to compute topological invariants of manifolds, beginning in the 1970's, spectral invariants were associated to elliptic differential operators in an attempt to formulate more subtle topological and geometric invariants of manifolds in the language of analysis, i.e. differential equations, on the manifold. The importance of these newer invariants is underscored in their appearance in the emerging theory of the fundamental forces by theoretical physicists. While these invariants are difficult to compute for general spaces, for those spaces arising from the action of a group, such as locally symmetric spaces, the harmonic analysis coming from the well-developed theory of the representations of the group provides a powerful tool to investigate these invariants. The introduction of geometric zeta functions serves to connect in a not-yet-understood way the topology of the manifold, via the fundamental group, to these invariants through the values of the zeta function at distinguished points. The goal to understand topological properties through differential equations then begins on a formal level to make contact with number theory.
摘要 斯坦顿DMS-9624387 斯坦顿将继续他对光谱不变量的研究 与椭圆微分算子相关的各种设置, 齐性和局部对称空间。特别是,他应 检验全纯向量的全纯挠率公式 局部对称空间上的丛,在早期的工作中得到, 为了在其中隔离由下式定义的R类的贡献, 比斯穆特和吉莱-苏尔他将尝试扩展他早期的工作 在局部对称空间,其中他有关扭转特殊 值的几何zeta函数,一类紧凑,Kaehler, 齐性空间对于四元数-Kaehler对称 和局部对称空间,他将寻求一个新的谱不变量, 他将尝试建立一个相关的几何zeta函数 来检测这个不变量。在另一个研究方向上,他 他将继续研究 使用几何表示理论的真实的旗流形。 继60年代指数定理的成功之后, 提供了一个分析框架来计算拓扑不变量 流形,从20世纪70年代开始,谱不变量是 与椭圆微分算子相关联, 用公式表达更微妙的拓扑和几何不变量, 流形的语言分析,即微分方程, 在歧管上。这些新的不变量的重要性是 在他们的出现强调在新兴的理论, 理论物理学家的基本力虽然这些不变量 对于一般空间来说很难计算,因为这些空间 从群的作用,如局部对称空间, 谐波分析来自发达的理论, 群的表示提供了一个强大的工具来研究 这些不变量。几何zeta函数的引入 以一种尚未被理解的方式连接流形的拓扑结构, 通过基本群,通过以下值, zeta函数在不同的点。目标是理解 通过微分方程的拓扑性质然后开始 一个与数论接触的正式层面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Stanton其他文献
Promises and perils of generative artificial intelligence: a narrative review informing its ethical and practical applications in clinical exercise physiology
- DOI:
10.1186/s13102-025-01182-7 - 发表时间:
2025-05-26 - 期刊:
- 影响因子:2.800
- 作者:
Oscar Lederman;Alessandro Llana;James Murray;Robert Stanton;Ritesh Chugh;Darren Haywood;Amanda Burdett;Geoff Warman;Joanne Walker;Nicolas H. Hart - 通讯作者:
Nicolas H. Hart
Physical Health and Health Behaviours of Australians with Psychosis
- DOI:
10.1007/s10597-024-01417-w - 发表时间:
2025-02-20 - 期刊:
- 影响因子:1.700
- 作者:
Brenda Happell;Chris Platania-Phung;Trentham Furness;Brett Scholz;Theo Niyonsenga;Andrew Watkins;Jackie Curtis;Zijian Wang;Supriya Khanijou;Robert Stanton - 通讯作者:
Robert Stanton
Associations between ability to recognise a mental health disorder and lived experience of mental illness in an Australian sample.
- DOI:
10.1016/j.psychres.2018.12.098 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:
- 作者:
Robert Stanton;Simon Rosenbaum;Amanda Rebar - 通讯作者:
Amanda Rebar
The effect of exercise on global, social, daily living and occupational functioning in people living with schizophrenia: A systematic review and meta-analysis
运动对精神分裂症患者整体、社会、日常生活和职业功能的影响:系统评价与荟萃分析
- DOI:
10.1016/j.schres.2023.04.012 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:3.500
- 作者:
Nicole Korman;Robert Stanton;Anna Vecchio;Justin Chapman;Stephen Parker;Rebecca Martland;Dan Siskind;Joseph Firth - 通讯作者:
Joseph Firth
The biomechanical effects of 3D printed and traditionally made foot orthoses in individuals with unilateral plantar fasciopathy and flat feet
- DOI:
10.1016/j.gaitpost.2022.06.006 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:
- 作者:
Malia Ho;Julie Nguyen;Luke Heales;Robert Stanton;Pui W. Kong;Crystal Kean - 通讯作者:
Crystal Kean
Robert Stanton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Stanton', 18)}}的其他基金
Symplectic methods in the analysis of symmetric spaces
对称空间分析中的辛方法
- 批准号:
0701198 - 财政年份:2007
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Conference on Differential Geometry, Mathematical Physics, and Mathematics and Society
微分几何、数学物理、数学与社会会议
- 批准号:
0649808 - 财政年份:2007
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Mathematical Sciences: Harmonic Analysis on Symmetric and Locally Symmetric Spaces
数学科学:对称和局部对称空间的调和分析
- 批准号:
9401193 - 财政年份:1994
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Analysis and Spectral Invariants on Locally Symmetric Manifolds
数学科学:局部对称流形上的几何分析和谱不变量
- 批准号:
9104094 - 财政年份:1991
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Reconstructing the Paleo-Community from the Fossil Assemblage -- Comparative Analysis of Living Communities andDeath Assemblages of the Inner Texas Shelf
从化石组合重建古群落——德克萨斯内陆架生命群落和死亡组合的比较分析
- 批准号:
8506043 - 财政年份:1986
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Comparative Analysis of Holocene Marine Fossil Assemblages and Living Communities in Texas Bays
德克萨斯州海湾全新世海洋化石组合和生物群落的比较分析
- 批准号:
8302339 - 财政年份:1984
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Reconstructing the Paleo Community From the Fossil Assemblage--Comparative Analysis of Living Communities and Death Assemblages in Texas Bays
从化石组合重建古群落--德克萨斯海湾活群落与死亡组合的比较分析
- 批准号:
8021164 - 财政年份:1981
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Biostratigraphy and Paleoecology of the Neogene of the Humboldt Basin
洪堡盆地新近纪的生物地层学和古生态学
- 批准号:
7709684 - 财政年份:1978
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
New modeling and mathematical analysis for pattern formations in life sciences
生命科学中模式形成的新建模和数学分析
- 批准号:
18H01139 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
- 批准号:
RGPIN-2014-03628 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
- 批准号:
RGPIN-2014-03628 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Construction of mathematical education centered on data analysis in humanities and social sciences departments
人文社科院系以数据分析为核心的数学教育建设
- 批准号:
17K00983 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference in Harmonic Analysis at the International Centre for Mathematical Sciences (ICMS)
国际数学科学中心 (ICMS) 调和分析会议
- 批准号:
1700938 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
- 批准号:
RGPIN-2014-03628 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
- 批准号:
RGPIN-2014-03628 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Construction of Mathematical Sciences Education for Data Analysis andUtilization of ICT in the Department of Humanities and Sociology
人文社会学系数据分析与ICT应用数学科学教育的构建
- 批准号:
26350199 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
- 批准号:
RGPIN-2014-03628 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
NSF/CBMS Regional Conference in the Mathematical Sciences - Analysis of Stochastic Partial Differential Equations
NSF/CBMS 数学科学区域会议 - 随机偏微分方程分析
- 批准号:
1241389 - 财政年份:2012
- 资助金额:
$ 5万 - 项目类别:
Standard Grant