On Local-Structure-Preserving Discontinuous Galerkin Methods

关于保持局部结构的不连续伽辽金方法

基本信息

  • 批准号:
    0652481
  • 负责人:
  • 金额:
    $ 8.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-15 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

High-order discontinuous Galerkin methods are widely used in the simulations of many scientific and engineering problems such as aeroacoustics, electromagnetics, transport of contaminants in porous media, weather forecasting, and image processing, among many others. These methods are known for their flexibility in handling complex geometries, different boundary conditions, and irregular meshes. In this project, the PI will explore the flexibility of these methods in choosing the approximating functions that preserve locally certain important features of the exact solution. This project will comprehensively cover the algorithm development, analysis, implementation, and applications of such local-structure-preserving discontinuous Galerkin methods, with the objective of obtaining new numerical methods that perform better than existing ones in computational electromagnetics, computational solid mechanics, and computational fluid dynamics. The proposed research will provide projects for the training of graduate students and advanced undergraduates.
高阶间断Galerkin方法广泛应用于航空声学、电磁学、多孔介质中污染物输运、天气预报和图像处理等科学和工程问题的模拟。 这些方法以其在处理复杂几何形状、不同边界条件和不规则网格方面的灵活性而闻名。 在这个项目中,PI将探索这些方法在选择近似函数时的灵活性,这些近似函数保留了精确解的某些重要特征。 该项目将全面涵盖算法开发,分析,实施和局部结构保持间断Galerkin方法的应用,目的是获得新的数值方法,在计算电磁学,计算固体力学和计算流体力学中比现有的方法表现更好。 本研究将为研究生和高年级本科生的培养提供项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fengyan Li其他文献

CDCA7 promotes progression of triple-negative breast cancer via upregulation of EZH2
CDCA7 通过上调 EZH2 促进三阴性乳腺癌进展
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liping Ye;Fengyan Li;Yipeng Song;Donglin Yu;Zhenchong Xiong;Yue Li;Tianyi Shi;Zhongyu Yuan;Chuyong Lin;Xianqiu Wu;Liangliang Ren;Xinghua Li;Libing Song
  • 通讯作者:
    Libing Song
On a degenerate mixed-type boundary value problem to the 2-D steady Euler equation
二维稳态欧拉方程的退化混合型边值问题
  • DOI:
    10.1016/j.jde.2019.06.022
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Fengyan Li;胡燕波
  • 通讯作者:
    胡燕波
H3PW12O40/Co3O4–Cu2S as a low-cost counter electrode catalyst for quantum dot-sensitized solar cells
H3PW12O40/Co3O4·Cu2S 作为量子点敏化太阳能电池的低成本对电极催化剂
  • DOI:
    10.1039/d0nj00500b
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Yi Yang;Qiu Zhang;Fengyan Li;Zhinan Xia;Lin Xu
  • 通讯作者:
    Lin Xu
A fully printed organic-inorganic metal halide perovskite photocathode for photoelectrochemical reduction of Cr(VI) in aqueous solution
  • DOI:
    10.1016/j.inoche.2022.109499
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shanshan Jin;Xinyi Yang;Ran Tao;Wencheng Fang;Zhanbin Jin;Fengyan Li;Lin Xu
  • 通讯作者:
    Lin Xu
Constructing oxygen vacancies and linker defects in MIL-125 @TiOsub2/sub for efficient photocatalytic nitrogen fixation
  • DOI:
    10.1016/j.jallcom.2022.164751
  • 发表时间:
    2022-07-15
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Libo Wang;Shiyu Wang;Mohan Li;Xue Yang;Fengyan Li;Lin Xu;Yongcun Zou
  • 通讯作者:
    Yongcun Zou

Fengyan Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fengyan Li', 18)}}的其他基金

High Order Methods for Kinetic Transport Models
动力学输运模型的高阶方法
  • 批准号:
    1913072
  • 财政年份:
    2019
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Compatible Discretizations for Maxwell Models in Nonlinear Optics
OP:协作研究:非线性光学中麦克斯韦模型的兼容离散化
  • 批准号:
    1719942
  • 财政年份:
    2017
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Continuing Grant
High order methods for some kinetic models
某些动力学模型的高阶方法
  • 批准号:
    1318409
  • 财政年份:
    2013
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
CAREER: Development and Applications of Discontinuous Galerkin Methods
职业:间断伽辽金方法的开发和应用
  • 批准号:
    0847241
  • 财政年份:
    2009
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
On Local-Structure-Preserving Discontinuous Galerkin Methods
关于保持局部结构的不连续伽辽金方法
  • 批准号:
    0609619
  • 财政年份:
    2006
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
  • 批准号:
    EP/Y033248/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Research Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
  • 批准号:
    23K17655
  • 财政年份:
    2023
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
  • 批准号:
    2309425
  • 财政年份:
    2023
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
  • 批准号:
    2309591
  • 财政年份:
    2023
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
CAREER: Structure-Preserving Multimodal Alignment between Vision and Language
职业:视觉和语言之间保持结构的多模态对齐
  • 批准号:
    2239840
  • 财政年份:
    2023
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
  • 批准号:
    2318032
  • 财政年份:
    2023
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309548
  • 财政年份:
    2023
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了