CAREER: Development and Applications of Discontinuous Galerkin Methods
职业:间断伽辽金方法的开发和应用
基本信息
- 批准号:0847241
- 负责人:
- 金额:$ 58.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The use of the basic principle of conservation has led to accurate and reliable mathematical models of the physical world. Such models, known as conservation laws, together with the related models such as Hamilton-Jacobi equations, display rich features in solutions and therefore continue to challenge the computational scientists. The primary objective of this CAREER proposal is to make several important steps towards the development and applications of high order accurate methods for solving these nonlinear equations. Discontinuous Galerkin methods will constitute the core methodology of this effort, this is due to their great flexibilities and capabilities in accurately and reliably simulating complicated problems. The project will comprehensively cover the algorithm design, analysis, implementation and applications.The success of the proposed research will have direct impact on the efficient and robust modeling of problems in areas as diverse as optimal control, image processing, computer vision, astrophysics, space physics and energy physics. The resulting ideas and methodologies will bring new components to reliably simulate nonlinear problems and complex systems arising in science, physics and engineering. Besides training graduate and undergraduate students in conducting research in computational science, mentoring women students in mathematics, the proposed educational and academic activities will also enhance interaction and collaborations among regional research groups.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。守恒基本原理的运用,导致了物理世界精确可靠的数学模型。这样的模型,被称为守恒定律,与相关的模型,如汉密尔顿-雅可比方程,在解中显示出丰富的特征,因此继续挑战计算科学家。本CAREER提案的主要目标是为解决这些非线性方程的高阶精确方法的发展和应用迈出几个重要的步骤。不连续伽辽金方法将构成这项工作的核心方法论,这是由于它们在准确可靠地模拟复杂问题方面具有很大的灵活性和能力。项目将全面涵盖算法设计、分析、实现和应用。该研究的成功将直接影响最优控制、图像处理、计算机视觉、天体物理学、空间物理学和能源物理学等领域问题的高效和鲁棒建模。由此产生的思想和方法将带来新的组件,以可靠地模拟科学,物理和工程中的非线性问题和复杂系统。除了训练研究生和本科生进行计算科学研究,指导女学生学习数学外,拟议的教育和学术活动还将加强区域研究小组之间的互动和合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fengyan Li其他文献
H3PW12O40/Co3O4–Cu2S as a low-cost counter electrode catalyst for quantum dot-sensitized solar cells
H3PW12O40/Co3O4·Cu2S 作为量子点敏化太阳能电池的低成本对电极催化剂
- DOI:
10.1039/d0nj00500b - 发表时间:
2020-07 - 期刊:
- 影响因子:3.3
- 作者:
Yi Yang;Qiu Zhang;Fengyan Li;Zhinan Xia;Lin Xu - 通讯作者:
Lin Xu
On a degenerate mixed-type boundary value problem to the 2-D steady Euler equation
二维稳态欧拉方程的退化混合型边值问题
- DOI:
10.1016/j.jde.2019.06.022 - 发表时间:
2019-11 - 期刊:
- 影响因子:2.4
- 作者:
Fengyan Li;胡燕波 - 通讯作者:
胡燕波
CDCA7 promotes progression of triple-negative breast cancer via upregulation of EZH2
CDCA7 通过上调 EZH2 促进三阴性乳腺癌进展
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Liping Ye;Fengyan Li;Yipeng Song;Donglin Yu;Zhenchong Xiong;Yue Li;Tianyi Shi;Zhongyu Yuan;Chuyong Lin;Xianqiu Wu;Liangliang Ren;Xinghua Li;Libing Song - 通讯作者:
Libing Song
A fully printed organic-inorganic metal halide perovskite photocathode for photoelectrochemical reduction of Cr(VI) in aqueous solution
- DOI:
10.1016/j.inoche.2022.109499 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:
- 作者:
Shanshan Jin;Xinyi Yang;Ran Tao;Wencheng Fang;Zhanbin Jin;Fengyan Li;Lin Xu - 通讯作者:
Lin Xu
Constructing oxygen vacancies and linker defects in MIL-125 @TiOsub2/sub for efficient photocatalytic nitrogen fixation
- DOI:
10.1016/j.jallcom.2022.164751 - 发表时间:
2022-07-15 - 期刊:
- 影响因子:6.300
- 作者:
Libo Wang;Shiyu Wang;Mohan Li;Xue Yang;Fengyan Li;Lin Xu;Yongcun Zou - 通讯作者:
Yongcun Zou
Fengyan Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fengyan Li', 18)}}的其他基金
High Order Methods for Kinetic Transport Models
动力学输运模型的高阶方法
- 批准号:
1913072 - 财政年份:2019
- 资助金额:
$ 58.21万 - 项目类别:
Standard Grant
OP: Collaborative Research: Compatible Discretizations for Maxwell Models in Nonlinear Optics
OP:协作研究:非线性光学中麦克斯韦模型的兼容离散化
- 批准号:
1719942 - 财政年份:2017
- 资助金额:
$ 58.21万 - 项目类别:
Continuing Grant
High order methods for some kinetic models
某些动力学模型的高阶方法
- 批准号:
1318409 - 财政年份:2013
- 资助金额:
$ 58.21万 - 项目类别:
Standard Grant
On Local-Structure-Preserving Discontinuous Galerkin Methods
关于保持局部结构的不连续伽辽金方法
- 批准号:
0652481 - 财政年份:2006
- 资助金额:
$ 58.21万 - 项目类别:
Standard Grant
On Local-Structure-Preserving Discontinuous Galerkin Methods
关于保持局部结构的不连续伽辽金方法
- 批准号:
0609619 - 财政年份:2006
- 资助金额:
$ 58.21万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
CAREER: Combining Human Judgment and Data-Driven Approaches for the Development of Interpretable Models of Student Behaviors: Applications to Computer Science Education
职业:结合人类判断和数据驱动的方法来开发可解释的学生行为模型:在计算机科学教育中的应用
- 批准号:
1942962 - 财政年份:2020
- 资助金额:
$ 58.21万 - 项目类别:
Continuing Grant
CAREER: Development of Efficient Spin Projection Models for Applications to Transition Metal Catalysis
职业:开发用于过渡金属催化的高效自旋投影模型
- 批准号:
1848580 - 财政年份:2019
- 资助金额:
$ 58.21万 - 项目类别:
Standard Grant
CAREER: Development and Applications of Photocontrolled Cationic Polymerizations
职业:光控阳离子聚合的开发和应用
- 批准号:
1752140 - 财政年份:2018
- 资助金额:
$ 58.21万 - 项目类别:
Continuing Grant
CAREER: Development of Reactive Electrochemical Membranes for Sustainable Water Treatment Applications: An Integrated Research and Education Plan
职业:开发用于可持续水处理应用的反应性电化学膜:综合研究和教育计划
- 批准号:
1453081 - 财政年份:2015
- 资助金额:
$ 58.21万 - 项目类别:
Standard Grant
CAREER: Development of Novel Polymer Electrolytes - Synthesis and Applications in Fuel Cells
职业:新型聚合物电解质的开发——合成及其在燃料电池中的应用
- 批准号:
1261331 - 财政年份:2012
- 资助金额:
$ 58.21万 - 项目类别:
Continuing Grant
CAREER: Understanding, Development and Applications of Nanoscale Memristor Devices
职业:纳米级忆阻器器件的理解、开发和应用
- 批准号:
0954621 - 财政年份:2010
- 资助金额:
$ 58.21万 - 项目类别:
Standard Grant
CAREER: Development of GIS applications for the study of aquatic biodiversity: Assessing environmental factors regulating fish assemblages across multiple scales
职业:开发用于水生生物多样性研究的 GIS 应用程序:评估多个尺度上调节鱼类组合的环境因素
- 批准号:
0844644 - 财政年份:2009
- 资助金额:
$ 58.21万 - 项目类别:
Continuing Grant
CAREER: Development of Novel Polymer Electrolytes - Synthesis and Applications in Fuel Cells
职业:新型聚合物电解质的开发——合成及其在燃料电池中的应用
- 批准号:
0747667 - 财政年份:2008
- 资助金额:
$ 58.21万 - 项目类别:
Continuing Grant
CAREER: Development and Applications of Catalytically Generated Activated Carboxylates
职业:催化生成的活化羧酸盐的开发和应用
- 批准号:
0934261 - 财政年份:2008
- 资助金额:
$ 58.21万 - 项目类别:
Continuing Grant
CAREER: The Development of a Patient-Specific Endovascular Graft for Vascular Applications
职业生涯:开发用于血管应用的患者特异性血管内移植物
- 批准号:
0644570 - 财政年份:2007
- 资助金额:
$ 58.21万 - 项目类别:
Standard Grant














{{item.name}}会员




