High Order Methods for Kinetic Transport Models

动力学输运模型的高阶方法

基本信息

  • 批准号:
    1913072
  • 负责人:
  • 金额:
    $ 27.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Accurate, robust and efficient simulations of kinetic transport models are of fundamental importance to many applications in physics and engineering, such as rarefied gas dynamics, plasma physics, nuclear and biomedical engineering, and network dynamics. While fluid models often provide lower dimensional approximations, they are valid only when the systems are closed to their equilibria, and therefore kinetic transport models are necessary to account for a wider range of phenomena, including those displaying multiple scales in space and/or time or those involving particles from multiple energy groups. This project aims at advancing computational tools of high order accuracy for time-dependent multi-scale kinetic transport models, both algorithmically and mathematically.Kinetic transport equations are mathematical descriptions of the transport of particles such as neutrons, photons, molecules as well as their interaction with a host medium or among themselves, and they arise in a broad range of applications. The numerical challenges lie in the high dimensionality of the phase space, small scales, multiple scales in space (and even in time), nonlinear interactions, collision operators with multi-fold integrals, as well as the conservation or positivity property of the solutions. The objective of this project is therefore to take important steps in the understanding and simulations of the time-dependent multi-scale kinetic transport models, with the aim of: 1) providing accurate deterministic simulation tools with excellent stability to the kinetic transport community, and 2) developing novel analytical and numerical techniques to address some challenges related to accurate multi-scale kinetic transport simulations. The longer term goal is to develop algorithms robustly simulating more realistic kinetic models with high resolution and good efficiency.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
准确、稳健和高效的动力学输运模型的模拟对于稀薄气体动力学、等离子体物理、核和生物医学工程以及网络动力学等许多物理和工程应用具有重要意义。虽然流体模型通常提供低维近似,但它们只有在系统接近其平衡时才有效,因此需要动力学输运模型来解释更广泛的现象,包括在空间和/或时间上显示多个尺度的现象或涉及来自多个能量组的粒子的现象。该项目的目标是在算法和数学上为含时多尺度动力学输运模型提供高精度的计算工具。动力学输运方程是对粒子输运的数学描述,如中子、光子、分子以及它们与宿主介质或它们之间的相互作用,它们出现在广泛的应用中。数值挑战在于相空间的高维、小尺度、空间(甚至时间)的多尺度、非线性相互作用、具有多重积分的碰撞算子以及解的守恒性或正性。因此,本项目的目标是在理解和模拟与时间相关的多尺度动力学输运模型方面采取重要步骤,目的是:1)向动力学输运界提供具有良好稳定性的精确确定性模拟工具;2)开发新的分析和数值技术,以解决与准确的多尺度动力学输运模拟有关的一些挑战。更长期的目标是开发算法,以高分辨率和良好的效率稳健地模拟更现实的动力学模型。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability-enhanced AP IMEX-LDG schemes for linear kinetic transport equations under a diffusive scaling
  • DOI:
    10.1016/j.jcp.2020.109485
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhichao Peng;Yingda Cheng;Jing-Mei Qiu;Fengyan Li
  • 通讯作者:
    Zhichao Peng;Yingda Cheng;Jing-Mei Qiu;Fengyan Li
Energy Stable SBP-FDTD Methods for Maxwell–Duffing Models in Nonlinear Photonics
非线性光子学中麦克斯韦杜芬模型的能量稳定 SBP-FDTD 方法
Stability-enhanced AP IMEX1-LDG method: energy-based stability and rigorous AP property
  • DOI:
    10.1137/20m1336503
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhichao Peng;Yingda Cheng;Jing-Mei Qiu;Fengyan Li
  • 通讯作者:
    Zhichao Peng;Yingda Cheng;Jing-Mei Qiu;Fengyan Li
A Reduced Basis Method for Radiative Transfer Equation
  • DOI:
    10.1007/s10915-022-01782-2
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Zhichao Peng;Yanlai Chen;Yingda Cheng;Fengyan Li
  • 通讯作者:
    Zhichao Peng;Yanlai Chen;Yingda Cheng;Fengyan Li
Asymptotic preserving IMEX-DG-S schemes for linear kinetic transport equations based on Schur complement
  • DOI:
    10.1137/20m134486x
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhichao Peng;Fengyan Li
  • 通讯作者:
    Zhichao Peng;Fengyan Li
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fengyan Li其他文献

CDCA7 promotes progression of triple-negative breast cancer via upregulation of EZH2
CDCA7 通过上调 EZH2 促进三阴性乳腺癌进展
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liping Ye;Fengyan Li;Yipeng Song;Donglin Yu;Zhenchong Xiong;Yue Li;Tianyi Shi;Zhongyu Yuan;Chuyong Lin;Xianqiu Wu;Liangliang Ren;Xinghua Li;Libing Song
  • 通讯作者:
    Libing Song
On a degenerate mixed-type boundary value problem to the 2-D steady Euler equation
二维稳态欧拉方程的退化混合型边值问题
  • DOI:
    10.1016/j.jde.2019.06.022
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Fengyan Li;胡燕波
  • 通讯作者:
    胡燕波
H3PW12O40/Co3O4–Cu2S as a low-cost counter electrode catalyst for quantum dot-sensitized solar cells
H3PW12O40/Co3O4·Cu2S 作为量子点敏化太阳能电池的低成本对电极催化剂
  • DOI:
    10.1039/d0nj00500b
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Yi Yang;Qiu Zhang;Fengyan Li;Zhinan Xia;Lin Xu
  • 通讯作者:
    Lin Xu
A fully printed organic-inorganic metal halide perovskite photocathode for photoelectrochemical reduction of Cr(VI) in aqueous solution
  • DOI:
    10.1016/j.inoche.2022.109499
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shanshan Jin;Xinyi Yang;Ran Tao;Wencheng Fang;Zhanbin Jin;Fengyan Li;Lin Xu
  • 通讯作者:
    Lin Xu
Constructing oxygen vacancies and linker defects in MIL-125 @TiOsub2/sub for efficient photocatalytic nitrogen fixation
  • DOI:
    10.1016/j.jallcom.2022.164751
  • 发表时间:
    2022-07-15
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Libo Wang;Shiyu Wang;Mohan Li;Xue Yang;Fengyan Li;Lin Xu;Yongcun Zou
  • 通讯作者:
    Yongcun Zou

Fengyan Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fengyan Li', 18)}}的其他基金

OP: Collaborative Research: Compatible Discretizations for Maxwell Models in Nonlinear Optics
OP:协作研究:非线性光学中麦克斯韦模型的兼容离散化
  • 批准号:
    1719942
  • 财政年份:
    2017
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
High order methods for some kinetic models
某些动力学模型的高阶方法
  • 批准号:
    1318409
  • 财政年份:
    2013
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
CAREER: Development and Applications of Discontinuous Galerkin Methods
职业:间断伽辽金方法的开发和应用
  • 批准号:
    0847241
  • 财政年份:
    2009
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
On Local-Structure-Preserving Discontinuous Galerkin Methods
关于保持局部结构的不连续伽辽金方法
  • 批准号:
    0652481
  • 财政年份:
    2006
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
On Local-Structure-Preserving Discontinuous Galerkin Methods
关于保持局部结构的不连续伽辽金方法
  • 批准号:
    0609619
  • 财政年份:
    2006
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2404521
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Hybrid Kinetic Monte Carlo Methods with Applications in Biofabrication and Epidemics
混合动力学蒙特卡罗方法在生物制造和流行病中的应用
  • 批准号:
    2208467
  • 财政年份:
    2022
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Analytical and Numerical Methods in Collisionless Kinetic Theory
无碰撞运动理论中的分析和数值方法
  • 批准号:
    2107938
  • 财政年份:
    2021
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Partial Differential Equation Methods in Kinetic Theory and Their Applications
运动理论中的偏微分方程方法及其应用
  • 批准号:
    2106650
  • 财政年份:
    2021
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Adaptive High Order Low-Rank Tensor Methods for High-Dimensional Partial Differential Equations with Application to Kinetic Simulations
高维偏微分方程的自适应高阶低阶张量方法及其在动力学模拟中的应用
  • 批准号:
    2111383
  • 财政年份:
    2021
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collisional Kinetic Transport: Analysis and Numerical Methods
碰撞动力学输运:分析和数值方法
  • 批准号:
    2009736
  • 财政年份:
    2020
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2011838
  • 财政年份:
    2020
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
CAREER: Computational Methods for Multiscale Kinetic Systems: Uncertainty, Non-Locality, and Variational Formulation
职业:多尺度动力学系统的计算方法:不确定性、非定域性和变分公式
  • 批准号:
    1846854
  • 财政年份:
    2019
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Mesh-free methods with least squares approximations for kinetic equations with moving boundaries
具有移动边界的动力学方程的最小二乘近似无网格方法
  • 批准号:
    428845667
  • 财政年份:
    2019
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Research Grants
Numerical Methods and Analysis for Multiscale Kinetic Equations with Uncertainties
具有不确定性的多尺度动力学方程的数值方法与分析
  • 批准号:
    1819012
  • 财政年份:
    2018
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了