Collaborative Research: DNA Amplification in a novel integrated microchip platform with temporal thermal control
合作研究:具有时间热控制的新型集成微芯片平台中的 DNA 扩增
基本信息
- 批准号:0653835
- 负责人:
- 金额:$ 28.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
COLLABORATIVE RESEARCH: DNA AMPLIFICATION IN A NOVEL INTEGRATED MICROCHIP PLATFORM WITH TEMPORAL THERMAL CONTROLImplementing precise time and space dependent heating and cooling in a microchip is potentially useful in a wide array of areas including reactions, separation, detection, etc. This project aims to develop such a microchip, and understand the fundamental implications of the temperature changes on fluid flow and heat and mass transfer, while developing a chip that can perform rapid DNA amplification. While microfluidic DNA amplification devices have been fabricated, their use in practical applications is nonexistent due to small throughputs. Here we propose a new paradigm for PCR in a microchannel that is based on temporal temperature cycling. To accomplish this objective, we propose a new chip design for implementing precise and accurate temperature gradients (both spatial and temporal). Furthermore, we propose a synergistic approach that leverages the strengths of both the PI's by combining modeling and experiments to develop a clear understanding of fundamental issues relevant to the proposed device. These issues include contribution of thermal expansion-contraction, and reactions on dispersion and amplification efficiency, and the effect of various design and operating parameters on the fluid-flow and mass transfer in the device. Such an understanding is crucial for designing an optimal microfluidic flow reactor for DNA amplification with a high throughput. The intellectual merit of the program is manifested in the goals of the project that include (i) development of a Smart Thermal Microchip (STM) for precise temperature modulation, (ii) an improved quantitative understanding of transport in microscale systems that are subjected to temporally changing temperatures; (iii) development of a numerical and analytical tools to analyze heat transfer in the Smart Thermal Microchip and to predict the dispersion and amplification of DNA samples using various input parameters such as the channel dimensions, number and frequency of the temperature cycles, dispersion coefficient of the DNA and the initial plug size; (iv) development of a novel idea for continuous and high throughput polymerase chain reaction on a microfluidic chip without an imposed pressure driven flow. The results of this proposal will improve our understanding of mass transfer in systems with reactions and temporal temperature gradients, and in particular lead to a thorough understanding of the transport processes involved in the DNA amplification by polymerase chain reaction on a microchip. These results will lead to a rational design and operation of these chips. The results of this research will have broader impacts in a number of areas. The Smart Thermal Microchip will find applications in other areas related to reactions, separations and detection. Furthermore, the amplification process is an integral part of DNA analysis and the importance of DNA analysis cannot be overstated. It is already important in various areas such as analysis of clinical samples, identification of mutations, detecting cancer, testing safety of genetically modified foods, forensic analysis and applications of DNA analysis are only expected to grow considerably. It is envisioned that the results of this study will enable optimization of amplification devices and additionally lead to development of a novel high throughput device. The educational program couples core skills of thermal and mass transport to reaction kinetics. The research will be integrated with the curriculum development of the Chemical Engineering Department of the University of Florida and of Brown University in the division of engineering and the chemical and biochemical engineering program. The program supports development of new courses in transport processes. The program offers excellent opportunities to new undergraduate laboratories exploring microfluidics. Students also apply their skills in transport phenomena to unveil methods for detecting microbial threats. The program is truly interdisciplinary and invites opportunities for collaborations. Strong ties are promoted between the fundamental engineering research and assay development in biotechnology and nanotechnology industries. Lastly, the research program unites the interests of the two PIs and will foster significant collaborations and exchange of ideas between the two research groups.
合作研究:一种新颖的集成微芯片平台中的DNA扩增与时间热控制在微芯片中实现精确的时间和空间相关的加热和冷却在包括反应、分离、检测等广泛的领域中是潜在有用的。本项目旨在开发这样的微芯片,并了解温度变化对流体流动和传热传质的基本影响,同时开发出一种可以进行快速DNA扩增的芯片。虽然已经制造了微流体DNA扩增装置,但由于小的吞吐量,它们在实际应用中的使用是不存在的。 在这里,我们提出了一个新的范例PCR在微通道中,是基于时间的温度循环。为了实现这一目标,我们提出了一种新的芯片设计,用于实现精确和准确的温度梯度(空间和时间)。 此外,我们提出了一种协同的方法,利用PI的优势相结合的建模和实验,以发展一个清晰的理解有关的基本问题,提出的设备。 这些问题包括热膨胀-收缩的贡献,以及对分散和放大效率的反应,以及各种设计和操作参数对装置中的流体流动和传质的影响。这种理解对于设计用于具有高通量的DNA扩增的最佳微流体流动反应器是至关重要的。 该计划的智力价值体现在该项目的目标中,包括(i)开发用于精确温度调制的智能热微芯片(STM),(ii)改进对受随时间变化的温度影响的微尺度系统中的传输的定量理解;(三)其他事项开发了一种数值和分析工具,用于分析智能热微芯片中的热传递,并使用各种方法预测DNA样品的分散和扩增。输入参数如通道尺寸、温度循环的数量和频率、DNA的分散系数和初始塞尺寸;(iv)开发用于在微流控芯片上进行连续和高通量聚合酶链式反应而无需施加压力驱动流动的新想法。 这一建议的结果将提高我们的理解与反应和时间温度梯度的系统中的质量传递,特别是导致在微芯片上的聚合酶链式反应的DNA扩增中所涉及的运输过程的透彻理解。 这些结果将导致这些芯片的合理设计和操作。这项研究的结果将在许多领域产生更广泛的影响。 智能热微芯片将在与反应,分离和检测相关的其他领域中找到应用。 此外,扩增过程是DNA分析的一个组成部分,DNA分析的重要性怎么强调都不过分。 它已经在临床样本分析,突变鉴定,癌症检测,转基因食品安全性测试,法医分析和DNA分析的应用等各个领域非常重要,预计只会大幅增长。 可以预见,本研究的结果将能够优化扩增装置,并进一步开发新型高通量装置。 该教育计划将热量和质量传输的核心技能与反应动力学结合起来。这项研究将与佛罗里达大学化学工程系和布朗大学工程系以及化学和生物化学工程课程的课程开发相结合。该计划支持运输过程中的新课程的开发。该计划为探索微流体的新本科实验室提供了极好的机会。学生们还运用他们在运输现象中的技能来揭示检测微生物威胁的方法。该计划是真正的跨学科,并邀请合作的机会。在生物技术和纳米技术行业的基础工程研究和分析开发之间促进了强有力的联系。最后,该研究计划将两个PI的利益结合起来,并将促进两个研究小组之间的重要合作和思想交流。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anubhav Tripathi其他文献
Innovative Method for Fully Automated, Enzyme-Free Tissue Dissociation and Preparation for Single-Cell Analysis
- DOI:
10.1007/s12195-025-00850-5 - 发表时间:
2025-07-03 - 期刊:
- 影响因子:5.000
- 作者:
Sarah Planchak;E. Celeste Welch;Benjamin Phelps;Joshua Phelps;Alejandra Hernandez Moyers;Kathryn Whitehead;John Murphy;Nikos Tapinos;Anubhav Tripathi - 通讯作者:
Anubhav Tripathi
Correlative Analysis and Impact of Intelligent Virtual Assistants on Machine Learning
智能虚拟助理对机器学习的相关分析及影响
- DOI:
10.1109/cicn.2019.8902424 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Mohd Aijaj Khan;Anubhav Tripathi;Aaradhya Dixit;M. Dixit - 通讯作者:
M. Dixit
Opioid quantification via microsampling techniques to assess opioid use in human laboratory studies
- DOI:
10.1038/s41598-025-99130-5 - 发表时间:
2025-05-21 - 期刊:
- 影响因子:3.900
- 作者:
Ramisa Fariha;Emma Rothkopf;Carolina L. Haass-Koffler;Anubhav Tripathi - 通讯作者:
Anubhav Tripathi
Bioimpedance Spectroscopy System for Glioblastoma Spheroid Growth and Dissociation Characterization
用于胶质母细胞瘤球体生长和解离表征的生物阻抗光谱系统
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Riley Renee Flores;E. Welch;Anubhav Tripathi - 通讯作者:
Anubhav Tripathi
Diuretic bioactivity optimization of furosemide in rats
- DOI:
10.1016/j.ejpb.2011.04.014 - 发表时间:
2011-10-01 - 期刊:
- 影响因子:
- 作者:
Bryan Laulicht;Anubhav Tripathi;Edith Mathiowitz - 通讯作者:
Edith Mathiowitz
Anubhav Tripathi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anubhav Tripathi', 18)}}的其他基金
Collaborative Research: Direct Exploration of New Nanoscale Structures using a Microfluidic Chip Integrated with Cryo-TEM
合作研究:使用与 Cryo-TEM 集成的微流控芯片直接探索新的纳米级结构
- 批准号:
0854097 - 财政年份:2009
- 资助金额:
$ 28.63万 - 项目类别:
Standard Grant
Collaborative Research: Understanding UV Protective Mechanisms Using Hybrid Nanoarchitectures
合作研究:利用混合纳米结构了解紫外线防护机制
- 批准号:
0756600 - 财政年份:2008
- 资助金额:
$ 28.63万 - 项目类别:
Standard Grant
Separation of Macromolecules Based on Conformation Pathways
基于构象途径的大分子分离
- 批准号:
0756588 - 财政年份:2008
- 资助金额:
$ 28.63万 - 项目类别:
Standard Grant
SGER:Developing New Methods Based on Folding and Unfolding Pathways
SGER:开发基于折叠和展开路径的新方法
- 批准号:
0621216 - 财政年份:2006
- 资助金额:
$ 28.63万 - 项目类别:
Standard Grant
A CONTINUOUS FLOW MICROREACTOR FOR LINEAR RNA AMPLIFICATION
用于线性 RNA 扩增的连续流微反应器
- 批准号:
0555874 - 财政年份:2006
- 资助金额:
$ 28.63万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 28.63万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 28.63万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Architecting DNA Nanodevices into Metamaterials, Transducing Materials, and Assembling Materials
DMREF/合作研究:将 DNA 纳米器件构建为超材料、转换材料和组装材料
- 批准号:
2323968 - 财政年份:2023
- 资助金额:
$ 28.63万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 28.63万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Architecting DNA Nanodevices into Metamaterials, Transducing Materials, and Assembling Materials
DMREF/合作研究:将 DNA 纳米器件构建为超材料、转换材料和组装材料
- 批准号:
2323969 - 财政年份:2023
- 资助金额:
$ 28.63万 - 项目类别:
Standard Grant
Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
- 批准号:
10797460 - 财政年份:2023
- 资助金额:
$ 28.63万 - 项目类别:
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2204656 - 财政年份:2022
- 资助金额:
$ 28.63万 - 项目类别:
Standard Grant
Collaborative Research: Chemical Biology of DNA repair
合作研究:DNA修复的化学生物学
- 批准号:
2204228 - 财政年份:2022
- 资助金额:
$ 28.63万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Engineering DNA and RNA computation through simulation, sequence design, and experimental verification
合作研究:FET:中:通过模拟、序列设计和实验验证进行 DNA 和 RNA 计算
- 批准号:
2211792 - 财政年份:2022
- 资助金额:
$ 28.63万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2204657 - 财政年份:2022
- 资助金额:
$ 28.63万 - 项目类别:
Standard Grant