Time-Dependent Instability in Rock Masses: Understanding, Prediction and Prevention

岩体中随时间变化的不稳定性:理解、预测和预防

基本信息

  • 批准号:
    0653942
  • 负责人:
  • 金额:
    $ 42.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

The instability of rock structures in areas of human habitat is important and is responsible worldwide for the loss of lives and large financial damages. Examples include landslides and rockfall, the collapse of underground tunnels and mine drifts, dam and bridge foundation failure, sinkholes, etc. This three-year project will investigate the effects of time on rock instabilities, and in particular, time-dependent crack growth (modes I, II, and III) leading to (or assisting with) field-scale rock mass deformation and failure. In general the time-dependent growth of tensile and shear fractures is an important and poorly-understood aspect of field-scale rock instabilities. The research will focus on the time-dependent degradation of rock masses when exposed in slopes or underground excavations, and will consider specific triggering methods for rock instability such as pore pressure or freeze-thaw as necessary. Also, the research will focus on "crack tip" rock mass degradation as opposed to the overall weathering of rock masses that may occur due to dissolution and other processes. This project consists of the following four research tasks:1. Advanced discontinuum numerical modeling. One of the key tasks will be to implement time-dependent fracture mechanics into a three-dimensional discontinuum code. This will be an extension of previous research where time-dependent fracture mechanics was implemented into a two dimensional discontinuum code (Kemeny, 2005). The time-dependent fracture mechanics will allow for time-dependent rock bridge failure and the progressive crack growth that results in the comminution of rock blocks. Overall this will allow realistic simulations of the time-dependent degradation of actual field-scale rock masses.2. Ground-based LIDAR and high-resolution digital imaging. Case studies will be conducted where LIDAR and digital imaging are utilized for detailed rock mass characterization. This also includes the use of semi-automated software for processing the LIDAR and digital imaging data. The detailed rock characterization data will provide state-of-the-art geometric and parameter information on field scale rock masses, including the characterization of rock bridges and small features that may contribute to rock block comminution. The new imaging technologies can be used to characterize pristine rock masses as well as degraded rock masses where failure has taken place. This information, along with laboratory testing, will then provide the basis for the numerical modeling described in task 1. 3. Development of tools and strategies for prediction and prevention. The results from tasks 1 and 2, along with ongoing theoretical fracture mechanics relationships, will be used to better understand and improve the monitoring of rock structures and the interpretation of monitoring results. Many techniques are now being developed to "sense" impending rock failure, such as microseismic monitoring, displacement monitoring, seismic tomography, and other techniques. The basis for all of these techniques is a basic understanding of the spatial and temporal nature of the rock failure process in rock masses. As our understanding of time-dependent rock failure increases through this work, these techniques can be improved and new techniques can be developed. 4. Dissemination of research results. Results from this research project will be disseminated in several ways, including publications and presentations, distance-delivered courses, and collaborations with industry and government and academic institutions.This work fits in very well with the proposed rock mechanics activities for DUSEL (Deep Underground Science and Engineering Lab). Collaboration will take place between this project and design, construction and operation activities at the selected DUSEL site. This collaboration may include case studies at the selected DUSEL site (tasks 1 and 2 above), the collaboration with other DUSEL projects and researchers, particularly those projects having to do with underground monitoring and the interpretation of monitoring results (task 3 above), and publishing research related to DUSEL projects and activities (task 4 above).
人类栖息地地区岩石结构的不稳定性是重要的,并对世界范围内的生命损失和巨大的经济损失负责。 例子包括滑坡和落石,地下隧道和矿山巷道,大坝和桥梁基础故障,天坑等的崩溃,这个为期三年的项目将调查时间对岩石不稳定性的影响,特别是,时间依赖性裂纹增长(模式I,II和III)导致(或协助)现场规模的岩体变形和破坏。一般来说,拉伸和剪切裂缝的随时间变化的增长是野外尺度岩石不稳定性的一个重要方面,但人们对这一问题的理解却很少。研究将集中在岩石块暴露在斜坡或地下挖掘时随时间而变的退化,并将考虑岩石不稳定的具体触发方法,如孔隙压力或冻融。 此外,研究将集中在“裂缝尖端”岩体退化,而不是岩体的整体风化,可能会发生由于溶解和其他过程。 本课题主要包括以下四个方面的研究任务:1.先进的不连续数值模拟。 关键任务之一将是实施时间相关的断裂力学到一个三维不连续代码。 这将是以前研究的扩展,其中时间相关断裂力学被实现为二维不连续体代码(Kemeny,2005)。 时变断裂力学将允许时变岩桥破坏和导致岩块粉碎的渐进裂纹扩展。 总的来说,这将允许真实的模拟实际现场规模的岩体随时间变化的退化。地面激光雷达和高分辨率数字成像。 将进行案例研究,利用激光雷达和数字成像进行详细的岩体表征。 这还包括使用半自动软件处理激光雷达和数字成像数据。详细的岩石表征数据将提供现场规模岩体的最新几何和参数信息,包括可能导致岩块粉碎的岩桥和小特征的表征。 新的成像技术可用于表征原始岩体以及发生破坏的退化岩体。 这些信息,沿着实验室测试,将为任务1中描述的数值建模提供基础。 3.制定预测和预防的工具和战略。 任务1和2的结果,沿着正在进行的理论断裂力学关系,将用于更好地理解和改进岩石结构的监测和监测结果的解释。 现在正在开发许多技术来“感知”即将发生的岩石破坏,例如微震监测、位移监测、地震层析成像和其他技术。 所有这些技术的基础是对岩体中岩石破坏过程的空间和时间性质的基本了解。 随着我们对岩石随时间破坏的理解通过这项工作的增加,这些技术可以得到改进,新技术可以开发。 4.传播研究成果。该研究项目的成果将通过多种方式传播,包括出版物和演示,远程授课,以及与工业界,政府和学术机构的合作。这项工作非常适合DUSEL(深部地下科学与工程实验室)的岩石力学活动。 该项目将与选定的DUSEL场地的设计、施工和运营活动进行合作。 这种合作可能包括在选定的DUSEL地点进行案例研究(上文任务1和2),与其他DUSEL项目和研究人员合作,特别是与地下监测和监测结果解释有关的项目(上文任务3),以及出版与DUSEL项目和活动有关的研究报告(上文任务4)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Kemeny其他文献

Observation of Rockfall in the Thermal Infrared
  • DOI:
    10.1007/s00603-024-04254-1
  • 发表时间:
    2024-12-05
  • 期刊:
  • 影响因子:
    6.600
  • 作者:
    Edward C. Wellman;Kirk W. Schafer;Chad P. Williams;Greatness H. Ojum;Julia J. Potter;Leonard D. Brown;Benjamin Meyer;Bradley J. Ross;John Kemeny
  • 通讯作者:
    John Kemeny
The Matching Principle Revisited
  • DOI:
    10.1007/bf03395436
  • 发表时间:
    2017-05-23
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Edward J. Green;John Kemeny
  • 通讯作者:
    John Kemeny

John Kemeny的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Kemeny', 18)}}的其他基金

Limestone Cave Collapse Evolution As an Analog for Long-Term Rock Behavior
石灰岩洞穴塌陷演化作为长期岩石行为的模拟
  • 批准号:
    1332765
  • 财政年份:
    2013
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Standard Grant
EAGER: Developing an Experimental Technique for Measuring Very Slow Crack Velocities in Rock Using the Atomic Force Microscope
EAGER:开发一种使用原子力显微镜测量岩石中极慢裂纹速度的实验技术
  • 批准号:
    1301821
  • 财政年份:
    2012
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Standard Grant
A Study of Fracture-Induced Coupling Phenomena in Rocks
岩石破裂耦合现象的研究
  • 批准号:
    9523072
  • 财政年份:
    1995
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Continuing Grant
The Next Step in Micromechanical Studies of Rock Deformationand Failure: Experiments and Theory for More Complicated Value Problems that Include Stress Gradient Effects
岩石变形和破坏微观力学研究的下一步:包括应力梯度效应在内的更复杂价值问题的实验和理论
  • 批准号:
    9022381
  • 财政年份:
    1991
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

当归芍药散基于双向调控Ras/cAMP-dependent PKA自噬通路的“酸甘化阴、辛甘化阳”的药性基础
  • 批准号:
    81973497
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
蒺藜苜蓿细胞周期蛋白依赖性激酶(cyclin-dependent kinase)对根瘤发育的功能研究
  • 批准号:
    31100871
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Posphoinositide-dependent kinase-1在肿瘤细胞趋化运动和转移中的作用机制
  • 批准号:
    30772529
  • 批准年份:
    2007
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mechanistic insights into translesion synthesis-dependent genome instability
对跨损伤合成依赖的基因组不稳定性的机制见解
  • 批准号:
    10714421
  • 财政年份:
    2023
  • 资助金额:
    $ 42.99万
  • 项目类别:
Functions of bacterial type IA topoisomerases in the prevention of R-loop-dependent and -independent genomic instability.
细菌 IA 型拓扑异构酶在预防 R 环依赖性和非依赖性基因组不稳定性中的功能。
  • 批准号:
    RGPIN-2022-03760
  • 财政年份:
    2022
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanisms underlying sex-dependent pregnancy outcomes caused by fetal and maternal genomic instability
胎儿和母体基因组不稳定引起的性别依赖性妊娠结局的机制
  • 批准号:
    10391992
  • 财政年份:
    2022
  • 资助金额:
    $ 42.99万
  • 项目类别:
Mechanisms underlying sex-dependent pregnancy outcomes caused by fetal and maternal genomic instability
胎儿和母体基因组不稳定引起的性别依赖性妊娠结局的机制
  • 批准号:
    10704495
  • 财政年份:
    2022
  • 资助金额:
    $ 42.99万
  • 项目类别:
Transcription-dependent IgH gene instability by RNA interference
RNA 干扰导致转录依赖性 IgH 基因不稳定
  • 批准号:
    19K06485
  • 财政年份:
    2019
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanisms of Replication-Dependent Microsatellite Instability in Human Disease
人类疾病中复制依赖性微卫星不稳定性的机制
  • 批准号:
    10004155
  • 财政年份:
    2017
  • 资助金额:
    $ 42.99万
  • 项目类别:
Earthquake nucleation on faults with rate- and state-dependent friction: a dynamical system's approach to instability
具有速率和状态相关摩擦的断层上的地震成核:动态系统的不稳定方法
  • 批准号:
    1344993
  • 财政年份:
    2014
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Continuing Grant
Microtuble-dependent markers for chromosome instability
染色体不稳定的微管依赖性标记
  • 批准号:
    8827718
  • 财政年份:
    2014
  • 资助金额:
    $ 42.99万
  • 项目类别:
Microtuble-dependent markers for chromosome instability
染色体不稳定的微管依赖性标记
  • 批准号:
    8688658
  • 财政年份:
    2014
  • 资助金额:
    $ 42.99万
  • 项目类别:
Genomic instability by Topoisomerase 1 induced by AID-dependent RNA editing
AID 依赖性 RNA 编辑引起的拓扑异构酶 1 引起的基因组不稳定性
  • 批准号:
    25440007
  • 财政年份:
    2013
  • 资助金额:
    $ 42.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了