Singular Integral Operators in Several Complex Variables
多个复数变量中的奇异积分算子
基本信息
- 批准号:0654195
- 负责人:
- 金额:$ 7.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The most important partial differential operators in the theory of functions of several complex variables are the Cauchy-Riemann (CR) operator and the tangential CR- operator, obtained by restricting the CR-operator to a surface in complex n-dimensional space. This project aims to extend in a significant way known results concerning the tangential CR-operator and the associated system of partial differential equations. In general, this system does not have a unique solution, so the best that one can do is to find the unique square-integrable solution orthogonal to the null-space of the operator. For this reason a fundamental object of study is the Szego projection operator, which is the orthogonal projection of the space of square-integrable functions onto the null space of the tangential CR-operator. This operator is well understood in the case of hypersurfaces in two-dimensional complex space that are of finite type (which means that they are not "too flat"). Part of this project examines the Szego projection operator for infinite-type surfaces in two-space. The approach is to think of the operator in terms of integration against a kernel and then to estimate the kernel function. The methods used in the finite-type case do not extend to this setting, so new ideas are needed. The principal investigator also intends to study the kernel for the Szego projection operator for convex surfaces in higher dimensions. The operator is reasonably well understood in this situation, though previous approaches have used knowledge of the Bergman kernel rather than direct analysis of the integral kernel. An examination of the latter should give additional insight into the nonisotropic metric that arises in this case. Finally, the CR- operator itself will be studied for a model non-(pseudo)convex surface in complex two-space for which estimates on the Szego kernel exist, but for which little is known about the CR-operator itself.Partial differential equations provide a powerful language for describing relationships between changing quantities. Some model heat flow, others are concerned with wave propagation, and yet others are just objects of study in their own right. For any partial differential one is interested in solving for unknown functions in terms of given initial data. The objective is to determine conditions under which a solution exists, conditions under which a solution is unique, and relationships between the properties of the given data and properties of the solution. Although this project studies partial differential equations that are of fundamental interest in pure rather than applied mathematics, the new techniques developed will be much more broadly applicable.
在复变函数理论中最重要的偏微分算子是Cauchy-Riemann (CR)算子和切向CR-算子,它们是通过将CR-算子限定在复n维空间的曲面上而得到的。本项目旨在以一种有意义的方式推广关于切向cr -算子和相关偏微分方程组的已知结果。一般来说,这个系统没有唯一解,所以我们能做的最好的就是找到唯一的平方可积解正交于算子的零空间。因此,一个基本的研究对象是Szego投影算子,它是平方可积函数空间在切向cr -算子的零空间上的正交投影。这个算子在二维复杂空间的有限型超曲面(这意味着它们不是“太平坦”)的情况下是很容易理解的。这个项目的一部分研究了二维空间中无限型曲面的Szego投影算子。方法是考虑算子对核函数的积分,然后估计核函数。在有限类型情况下使用的方法不能扩展到这种情况,因此需要新的想法。研究了高维凸曲面的Szego投影算子的核。在这种情况下,虽然以前的方法使用的是伯格曼核的知识,而不是对积分核的直接分析,但算子是相当容易理解的。对后者的考察应该对在这种情况下产生的非各向同性度量提供额外的见解。最后,我们将研究复二空间中模型非(伪)凸曲面的CR-算子本身,该曲面存在Szego核的估计,但对CR-算子本身知之甚少。偏微分方程为描述变化量之间的关系提供了一种强大的语言。有些模拟热流,有些与波的传播有关,还有一些本身就是研究对象。对于任何一种偏微分,人们都对用给定的初始数据求解未知函数感兴趣。目标是确定解决方案存在的条件,解决方案唯一的条件,以及给定数据的属性和解决方案的属性之间的关系。虽然这个项目研究的偏微分方程是纯数学而不是应用数学的基本兴趣,但所开发的新技术将有更广泛的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Brooks其他文献
Sa1222 Results of a Safety and Tolerability Study of Rpc1063, a Novel Orally Administered Sphingosine-1-Phosphate Receptor 1 (S1p1r) Agonist, in Healthy Adult Volunteers
- DOI:
10.1016/s0016-5085(13)60828-8 - 发表时间:
2013-05-01 - 期刊:
- 影响因子:
- 作者:
Allan Olson;Gregg Timony;Jeffrey P. Hartung;Heather Smith;Robert J. Peach;Hugh Rosen;Christine Pan;Jennifer Brooks;Marcus Boehm;Sheila Gujrathi - 通讯作者:
Sheila Gujrathi
Public perceptions, knowledge and stigma towards people with schizophrenia
公众对精神分裂症患者的看法、知识和耻辱
- DOI:
10.1108/17465721111134547 - 发表时间:
2011 - 期刊:
- 影响因子:1.4
- 作者:
V. Smith;Jairus M. Reddy;Kenneth Foster;E. T. Asbury;Jennifer Brooks - 通讯作者:
Jennifer Brooks
Effects of Isoquercetin on Plasma Protein Disulfide Isomerase Activity and Extracellular Vesicle Tissue Factor Antigen/Activity in Sickle Cell Disease
- DOI:
10.1182/blood-2022-166982 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Bindu Parachalil Gopalan;Maria A.A. Lizarralde-Iragorri;Anna Conrey;Mai Hill;Brenda Merriweather;Jennifer Brooks;Ruth Pierre Charles;Eveline Gwaabe;Rafael Villasmil;Neal Jeffries;Arun S. Shet - 通讯作者:
Arun S. Shet
Hardy Spaces and Canonical Kernels on Quadric CR Manifolds
- DOI:
10.1007/s12220-024-01708-4 - 发表时间:
2024-06-10 - 期刊:
- 影响因子:1.500
- 作者:
Albert Boggess;Jennifer Brooks;Andrew Raich - 通讯作者:
Andrew Raich
Contraceptive use and the risk of ovarian cancer among women with a emBRCA1/em or emBRCA2/em mutation
- DOI:
10.1016/j.ygyno.2022.01.014 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:4.100
- 作者:
Yue Yin Xia;Jacek Gronwald;Beth Karlan;Jan Lubinski;Jeanna M. McCuaig;Jennifer Brooks;Pal Moller;Andrea Eisen;Sophie Sun;Leigha Senter;Louise Bordeleau;Susan L. Neuhausen;Christian F. Singer;Nadine Tung;William D. Foulkes;Ping Sun;Steven A. Narod;Joanne Kotsopoulos;Rinat Yerushalmi;Robert Fruscio;Stephanie Cohen - 通讯作者:
Stephanie Cohen
Jennifer Brooks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Brooks', 18)}}的其他基金
相似国自然基金
用CLEAN和直接解调方法分析INTEGRAL数据
- 批准号:10603004
- 批准年份:2006
- 资助金额:35.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Singular integral operators and special functions in scattering theory
散射理论中的奇异积分算子和特殊函数
- 批准号:
21K03292 - 财政年份:2021
- 资助金额:
$ 7.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singular Integral Operators for Higher-Order Systems in Non-Smooth Domains
非光滑域高阶系统的奇异积分算子
- 批准号:
1900938 - 财政年份:2019
- 资助金额:
$ 7.42万 - 项目类别:
Standard Grant
Singular integral operators and stochastic processes (A02)
奇异积分算子和随机过程(A02)
- 批准号:
366722790 - 财政年份:2017
- 资助金额:
$ 7.42万 - 项目类别:
Collaborative Research Centres
A study of singular integral operators
奇异积分算子的研究
- 批准号:
15K04938 - 财政年份:2015
- 资助金额:
$ 7.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harmonic analysis: function spaces and singular integral operators
调和分析:函数空间和奇异积分算子
- 批准号:
DP120100399 - 财政年份:2012
- 资助金额:
$ 7.42万 - 项目类别:
Discovery Projects
Theory of Singular Integral Operators in Non-commutative Harmonic Analysis. A verification of Use of Real Hardy Spaces.
非交换调和分析中的奇异积分算子理论。
- 批准号:
20540188 - 财政年份:2008
- 资助金额:
$ 7.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Further Development of the Theory of Bellman Functions and Applications to Estimates for Singular Integral Operators
贝尔曼函数理论的进一步发展及其在奇异积分算子估计中的应用
- 批准号:
0630852 - 财政年份:2006
- 资助金额:
$ 7.42万 - 项目类别:
Standard Grant
Singular Fourier Integral Operators, Micro-hyperbolicity and second microlocalization
奇异傅立叶积分算子、微双曲性和二次微定位
- 批准号:
15540185 - 财政年份:2003
- 资助金额:
$ 7.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Boundedness of Singular integral operators and applications to Bochner-Riesz summability, Riesz transforms, and Hardy spaces.
奇异积分算子的有界性以及 Bochner-Riesz 可求和性、Riesz 变换和 Hardy 空间的应用。
- 批准号:
DP0344688 - 财政年份:2003
- 资助金额:
$ 7.42万 - 项目类别:
Discovery Projects
A Further Development of the Theory of Bellman Functions and Applications to Estimates for Singular Integral Operators
贝尔曼函数理论的进一步发展及其在奇异积分算子估计中的应用
- 批准号:
0300255 - 财政年份:2003
- 资助金额:
$ 7.42万 - 项目类别:
Standard Grant