Microreactor-Assisted Nanoparticle Deposition: An Efficient, Green Route to Functionally Gradient Films
微反应器辅助纳米粒子沉积:功能梯度薄膜的高效、绿色途径
基本信息
- 批准号:0654434
- 负责人:
- 金额:$ 29.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-15 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROPOSAL NUMBER: 0654434PRINCIPAL INVESTIGATOR: Paul, Brian K.INSTITUTION: Oregon State UniversityIntellectual Merit: We propose to investigate the underlying science and technology for assembling functionally-gradient, hierarchical (nano to micro) structures from nanomaterial building blocks synthesized within compact, highly-paralleled microreactor systems. The proposed research concept combines the merits of microreaction technology with solution-phase nanoparticle deposition (hybrid). In synthesis, microreactor technology offers large surface-area-to-volume ratios within microchannel structures to accelerate heat and mass transport. This accelerated transport allows for rapid changes in reaction temperatures and concentrations leading to more uniform heating and mixing. Consequently, microreactors have been demonstrated to have dramatic reductions in the dispersity of nanoparticle size distributions. The possibility of synthesizing nanomaterials in the required volumes at the point-of-application, eliminates the need to store and transport potentially hazardous materials while providing new opportunities for tailoring novel functionally gradient structures. In the proposed work, this technology will be extended to fabricate a variety of new, functionally-gradient structures that are currently too cumbersome to produce by other means. With the large and growing library of nanotechnology synthesis and assembly techniques based on wet chemistry (e.g. precipitation, sol-gel, etc.), we believe Microreactor-Assisted Nanoparticle Deposition will open a green (environmentally benign), low cost route for producing novel, high-performance films. In this proposal, our research will culminate with the fabrication of high-performance, "moth-eye" anti-reflective films for glass consisting of size, shape and compositionally gradient layers having subwavelength structures. It is expected that the development of these new techniques will enable a host of new functionally gradient films with a broad set of applications including fuel cell electrode membranes, photovoltaic films, wearable electronics and biomedical films among others.Broader Impacts: This concept has the potential to transform current batch nanofabrication practices into continuous processes for mass production having precise process control without the need for expensive infrastructure such as particulate control, high vacuum and high temperatures. These qualities could revolutionize the future nano/microfabrication facility while reducing environmental impacts. This new process has the potential to help reduce the environmental impact of nanoproduction through the inclusion of integrated microchannel separation techniques and reagent recycling. The possibility of synthesizing nanomaterials at the point-of-use will significantly reduce the carrying costs and obsolescence of expensive nanomaterials while reducing the human exposure to potentially hazardous materials. We will develop educational materials for graduate, undergraduate, and existing K-12 outreach programs on the OSU campus and for recruiting and retaining underrepresented groups (young women and ethnic minorities) into science and engineering. Our approach is two-pronged. First, we seek to recruit a new generation of science, engineering and business students to perform hierarchical manufacturing research, development and commercialization by creating educational modules and laboratory activities and delivering these to undergraduate and high school students. Second, we aim to engage new recruits in various development and commercialization activities which will yield a new crop of students with the motivation for understanding and extending the science underlying hierarchical manufacturing technology.
提案编号:0654434主要研究者:Paul,Brian K.研究机构:俄勒冈州州立大学智力优势:我们建议研究从紧凑的高度可扩展的微反应器系统中合成的纳米材料构建块组装功能梯度,分级(纳米到微米)结构的基础科学和技术。所提出的研究概念结合了微反应技术与溶液相纳米颗粒沉积(混合)的优点。在合成中,微反应器技术在微通道结构内提供大的表面积与体积比,以加速热量和质量传输。这种加速的传输允许反应温度和浓度的快速变化,从而导致更均匀的加热和混合。因此,微反应器已被证明具有显着降低纳米颗粒尺寸分布的分散性。在应用点合成所需数量的纳米材料的可能性消除了储存和运输潜在危险材料的需要,同时为定制新的功能梯度结构提供了新的机会。在拟议的工作中,这项技术将被扩展到制造各种新的,功能梯度结构,目前太麻烦,无法通过其他方式生产。随着基于湿化学(例如沉淀、溶胶-凝胶等)的纳米技术合成和组装技术的庞大且不断增长的库,我们相信微反应器辅助的纳米颗粒沉积将开辟一条生产新型高性能薄膜的绿色(环境友好)、低成本路线。在这个建议中,我们的研究将最终与高性能的制造,“蛾眼”的玻璃抗反射膜组成的大小,形状和成分梯度层具有亚波长结构。预计这些新技术的发展将使一系列新的功能梯度薄膜具有广泛的应用,包括燃料电池电极膜、光伏薄膜、可穿戴电子产品和生物医学薄膜等。该概念具有将当前的批量纳米制造实践转变为用于大规模生产的连续过程的潜力,其具有精确的过程控制,而不需要昂贵的制造工艺。基础设施,如颗粒控制,高真空和高温。这些品质可以彻底改变未来的纳米/微米制造设施,同时减少对环境的影响。这种新工艺有可能通过集成微通道分离技术和试剂回收来帮助减少纳米生产对环境的影响。在使用点合成纳米材料的可能性将大大降低昂贵纳米材料的携带成本和淘汰,同时减少人类接触潜在危险材料的机会。我们将开发研究生,本科和现有的K-12外展计划在俄勒冈州立大学校园和招聘和保留代表性不足的群体(年轻女性和少数民族)到科学和工程的教育材料。我们的方法是双管齐下的。首先,我们寻求招募新一代的科学,工程和商业学生进行分层制造研究,开发和商业化,通过创建教育模块和实验室活动,并将其提供给本科生和高中生。其次,我们的目标是让新员工参与各种开发和商业化活动,这将产生一批新的学生,他们有动机理解和扩展分层制造技术的科学基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Paul其他文献
A Supplementary Labor Cost Model for Estimating the Fixed Capital Cost of Commercial-Scale Algae Photobioreactors Plants
用于估算商业规模藻类光生物反应器工厂固定资本成本的补充劳动力成本模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.9
- 作者:
Asmaa Harfoush;Ean H. Ng;Brian Paul - 通讯作者:
Brian Paul
Influence of high hydrostatic pressure on protein clustering: Implications for processing and macroscopic crystallization
- DOI:
10.1016/j.bpj.2022.11.1952 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Brian Paul;Susana Cristina Marujo Teixeira;Eric M. Furst;Abraham M. Lenhoff;Norman Wagner - 通讯作者:
Norman Wagner
Brian Paul的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Paul', 18)}}的其他基金
Workshop: Blue Skies Manufacturing Workshop at 2018 NAMRC/MSEC; College Station, Texas; June 18-22, 2018
研讨会:2018 NAMRC/MSEC 蓝天制造研讨会;
- 批准号:
1748132 - 财政年份:2017
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Workshop: Advanced Manufacturing for Smart Goods; Vancouver, Washington; May 19-20, 2015
研讨会:智能商品先进制造;
- 批准号:
1535849 - 财政年份:2015
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
相似海外基金
Nanoparticle-assisted enhanced oil recovery (Nano-EOR) in unconventional oil reservoirs
非常规油藏纳米粒子辅助提高采收率(Nano-EOR)
- 批准号:
RGPIN-2019-05564 - 财政年份:2022
- 资助金额:
$ 29.93万 - 项目类别:
Discovery Grants Program - Individual
Nanoparticle Arrays for Novel, Organized Perovskites Assisted by Copolymer assembly Kinetics (NANOPACK): Designer nanomaterials for energy applications
共聚物组装动力学辅助的新型有序钙钛矿纳米粒子阵列 (NANOPACK):用于能源应用的设计纳米材料
- 批准号:
RGPIN-2019-05994 - 财政年份:2022
- 资助金额:
$ 29.93万 - 项目类别:
Discovery Grants Program - Individual
Nanoparticle Arrays for Novel, Organized Perovskites Assisted by Copolymer assembly Kinetics (NANOPACK): Designer nanomaterials for energy applications
共聚物组装动力学辅助的新型有序钙钛矿纳米粒子阵列 (NANOPACK):用于能源应用的设计纳米材料
- 批准号:
RGPIN-2019-05994 - 财政年份:2021
- 资助金额:
$ 29.93万 - 项目类别:
Discovery Grants Program - Individual
Nanoparticle-assisted enhanced oil recovery (Nano-EOR) in unconventional oil reservoirs
非常规油藏纳米粒子辅助提高采收率(Nano-EOR)
- 批准号:
RGPIN-2019-05564 - 财政年份:2021
- 资助金额:
$ 29.93万 - 项目类别:
Discovery Grants Program - Individual
CAS: Mechanistic Study of Reaction Intermediates in Nanoparticle-Enhanced Plasma-Assisted Catalysis
CAS:纳米粒子增强等离子体辅助催化反应中间体的机理研究
- 批准号:
1954834 - 财政年份:2020
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Nanoparticle-assisted enhanced oil recovery (Nano-EOR) in unconventional oil reservoirs
非常规油藏纳米粒子辅助提高采收率(Nano-EOR)
- 批准号:
RGPIN-2019-05564 - 财政年份:2020
- 资助金额:
$ 29.93万 - 项目类别:
Discovery Grants Program - Individual
Nanoparticle Arrays for Novel, Organized Perovskites Assisted by Copolymer assembly Kinetics (NANOPACK): Designer nanomaterials for energy applications
共聚物组装动力学辅助的新型有序钙钛矿纳米粒子阵列 (NANOPACK):用于能源应用的设计纳米材料
- 批准号:
RGPIN-2019-05994 - 财政年份:2020
- 资助金额:
$ 29.93万 - 项目类别:
Discovery Grants Program - Individual
Nanoparticle-assisted enhanced oil recovery (Nano-EOR) in unconventional oil reservoirs
非常规油藏纳米粒子辅助提高采收率(Nano-EOR)
- 批准号:
RGPIN-2019-05564 - 财政年份:2019
- 资助金额:
$ 29.93万 - 项目类别:
Discovery Grants Program - Individual
Nanoparticle Arrays for Novel, Organized Perovskites Assisted by Copolymer assembly Kinetics (NANOPACK): Designer nanomaterials for energy applications
共聚物组装动力学辅助的新型有序钙钛矿纳米粒子阵列 (NANOPACK):用于能源应用的设计纳米材料
- 批准号:
RGPIN-2019-05994 - 财政年份:2019
- 资助金额:
$ 29.93万 - 项目类别:
Discovery Grants Program - Individual
UK:Development of a marketable nanoparticle-assisted high-throughput prototype system for chemical speciation measurements of trace elements (DIFFNAL)
英国:开发可销售的纳米颗粒辅助高通量原型系统,用于微量元素化学形态测量(DIFFNAL)
- 批准号:
NE/S013490/1 - 财政年份:2019
- 资助金额:
$ 29.93万 - 项目类别:
Research Grant