Information Inequalities and Combinatorial Applications
信息不等式和组合应用
基本信息
- 批准号:0701043
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent collaboration with M. Madiman (Yale University), the PI has initiated a systematic formulation and understanding of several classical and modern inequalities from information theory. The full relevance and importance of these inequalities to combinatorics and related topics is slowly emerging. Several fundamental combinatorial enumeration problems, concerning counting independent sets, spanning trees, matchings in graphs, and estimating the size of various hereditary families (such as union-closed, lambda-free, etc.) are described as possible applications; some of these are slated as joint research with students. Another topic of renewed interest is that of analyzing randomized algorithms to solve the discrete logarithm problem of significant interest in cryptography. In joint work with R. Montenegro (University of Massachussetts), the PI has been studying Markov chain methods to help analyze the running time of such algorithms. This and other applications of Markov chains form a second component of this proposal.Finally, the study includes continued collaboration with S. Bobkov (University of Minnesota) on understanding the connection between isoperimetric profile and spectral inequalities in continuous and discrete measurable metric spaces.Strengthened and generalized forms of Maz'ya-Cheeger-type inequalities are derived in continuous spaces, with their discrete counterparts remaining to be formulated and proved. Recent development of techniques, succinctly termed as discrete calculus, offers a promising way to simultaneously apply classical geometric and functional analytic tools to both the continuous and the discrete domains.Information theoretic techniques originating from Shannon's ideas and entropy bounds have been of vital importance in coding theory, statistics, game theory, and other applied topics, since the 1950's. However their utility and significance to other areas, in particular discrete mathematics, is becoming apparent in recent times.The current study describes certain basic information theoretic techniques and proposes further combinatorial (and other) applications. The study also focuses on using well known methods in the theory of Markov chains to analyze various questions arising in practicaldomains: these include computational number theory problems, such as the discrete logarithm problem, of cryptographic interest, and modeling as well as sampling problems in biology, to help understand the RNA secondary structure. The PI and collaborators hope to engage one or two undergraduate students in implementing certain computer simulations, as well as to introduce them to the relevant theoretical/mathematical investigations. Thus, in all, the proposed activity investigates several problems of current interest in discretemathematics, applied probability, and theoretical computer science. Thewide range of problems posed throughout the proposal, with clearly identified solution approaches, makes much of the proposed work inviting to students and young research faculty, and as such provides a sound educational component to the PI's research agenda. The full breadth of the proposed interdisciplinary research spans various topics in combinatorics, computing, information theory, probability, statistical physics, cryptography and biology.
在最近与M。Madiman(耶鲁大学),PI已经从信息论开始了对几个经典和现代不等式的系统阐述和理解。这些不等式对组合数学和相关主题的充分相关性和重要性正在慢慢显现。 几个基本的组合计数问题,涉及独立集的计数、生成树的计数、图中匹配的计数以及各种遗传家族(如并闭家族、无图家族等)的规模估计。被描述为可能的应用;其中一些被定为与学生的联合研究。 另一个重新引起兴趣的主题是分析随机算法来解决密码学中重要的离散对数问题。 与R. Montenegro(马萨诸塞大学),PI一直在研究马尔可夫链方法,以帮助分析此类算法的运行时间。马尔可夫链的这一应用和其他应用构成了本建议的第二个组成部分。Bobkov(University of Minnesota)关于理解连续和离散可测度量空间中等周轮廓与谱不等式之间的联系的论文,在连续空间中导出了Maz'ya-Cheeger型不等式的加强和推广形式,其离散形式的不等式有待公式化和证明。 最近发展的技术,简洁地称为离散微积分,提供了一个有前途的方法,同时适用于经典的几何和功能的分析工具,以连续和discrete domain.Information理论技术起源于香农的思想和熵界一直是至关重要的编码理论,统计,博弈论,和其他应用主题,自20世纪50年代以来。然而,他们的效用和其他领域的意义,特别是离散数学,是越来越明显,在最近的times.The目前的研究描述了某些基本的信息理论技术,并提出了进一步的组合(和其他)应用。 该研究还侧重于使用马尔可夫链理论中的众所周知的方法来分析实际领域中出现的各种问题:这些问题包括计算数论问题,如离散对数问题,密码学兴趣,建模以及生物学中的采样问题,以帮助理解RNA二级结构。 PI和合作者希望让一两名本科生参与实施某些计算机模拟,并向他们介绍相关的理论/数学研究。 因此,总而言之,拟议的活动研究了离散数学、应用概率和理论计算机科学中当前感兴趣的几个问题。 整个提案中提出的广泛问题,以及明确确定的解决方法,使许多拟议的工作邀请学生和年轻的研究人员,并因此为PI的研究议程提供了一个良好的教育组成部分。 拟议的跨学科研究的全部广度跨越组合学,计算,信息论,概率,统计物理,密码学和生物学的各种主题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prasad Tetali其他文献
The Number of Linear Extensions of the Boolean Lattice
- DOI:
10.1023/b:orde.0000034596.50352.f7 - 发表时间:
2003-11-01 - 期刊:
- 影响因子:0.300
- 作者:
Graham R. Brightwell;Prasad Tetali - 通讯作者:
Prasad Tetali
Prasad Tetali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prasad Tetali', 18)}}的其他基金
Conference: 2024 19th Annual Graduate Students Combinatorics Conference
会议:2024年第19届研究生组合学年会
- 批准号:
2334815 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
New Approaches to Questions in Sampling, Counting, and Optimization
解决采样、计数和优化问题的新方法
- 批准号:
2151283 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
New Approaches to Questions in Sampling, Counting, and Optimization
解决采样、计数和优化问题的新方法
- 批准号:
2055022 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Discrete Convexity, Curvature, and Implications
离散凸性、曲率和含义
- 批准号:
1811935 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Graph Structure, the Four Color Theorem, and Generalizations
图结构、四色定理和概括
- 批准号:
1700157 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
EAGER: Physical Flow and other Industrial Challenges
EAGER:物理流动和其他工业挑战
- 批准号:
1415496 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Displacement Convexity, Curvature and Concentration in Discrete Settings
离散设置中的位移凸度、曲率和浓度
- 批准号:
1407657 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
Random graph interpolation, Sumset inequalities and Submodular problems
随机图插值、和集不等式和子模问题
- 批准号:
1101447 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Extremal Problems in Combinatorics and Their Applications
组合学中的极值问题及其应用
- 批准号:
0901355 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Graph Homomorphisms, Stochastic Networks, Discrete Mass Transport
图同态、随机网络、离散质量传输
- 批准号:
0401239 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Rural Co-Design and Collaboration: Maximising Rural Community Assets to Reduce Place-Based Health Inequalities
农村共同设计与协作:最大化农村社区资产以减少基于地点的健康不平等
- 批准号:
AH/Z505559/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
-- - 项目类别:
What are the implications of health inequalities such as parental education and household income in BAME 11-16 year old's mental health in Wales
父母教育和家庭收入等健康不平等对威尔士 BAME 11-16 岁心理健康有何影响
- 批准号:
2875399 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
Analysing Earnings from Creative Education and Creative Work: Decomposing University, Industry and Social Inequalities.
分析创意教育和创意工作的收入:分解大学、工业和社会不平等。
- 批准号:
ES/Z502455/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Bridging the Gender Data Gap: Using Census Data to Understand Gender Inequalities Across the UK
缩小性别数据差距:利用人口普查数据了解英国各地的性别不平等
- 批准号:
ES/Z502753/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
National Partnership to tackle Health Inequalities in Coastal Communities
国家伙伴关系解决沿海社区的健康不平等问题
- 批准号:
AH/Z505419/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
ReHousIn - Contextualized pathways to reduce housing inequalities in the green and digital transition
ReHousIn - 减少绿色和数字转型中住房不平等的情境化途径
- 批准号:
10092240 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Making Every Community Asset Count: Improving Health and Reducing Inequalities for People Experiencing Homelessness
让每一项社区资产发挥作用:改善无家可归者的健康并减少不平等
- 批准号:
AH/Z505389/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Tackling Health Inequalities with and for the Deaf BSL-Using Communities in Wales
与威尔士使用 BSL 的聋人社区一起解决健康不平等问题
- 批准号:
AH/Z505432/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant