New Approaches to Questions in Sampling, Counting, and Optimization

解决采样、计数和优化问题的新方法

基本信息

  • 批准号:
    2151283
  • 负责人:
  • 金额:
    $ 30.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The project addresses fundamental research directions overlapping with the areas of probability, combinatorics, statistical mechanics and optimization. The technical challenges include acceleration of random walks on discrete structures such as graphs, optimal analysis of classical random walks restricted to special subsets of lattices, and developing new combinatorial enumeration techniques from graphs to hypergraphs. The resulting methods have potential for applications in statistical physics. Some of the applications, such as the Traveling Fireman Problem, are inspired by practical challenges and would have important societal impacts. The project provides training opportunities for students. The PI will continue to host expository lecture series as well as working group activities that feature and support junior researchers, including those from underrepresented minorities. The project includes efforts to speed up random walks for faster sampling, inspired by acceleration techniques in Langevin dynamics and continuous optimization; tight estimates on the mixing time of constrained random walks on distributive lattices, a study originally motivated by dynamical aspects of bond percolation on the square lattice; and the development of cluster expansion and zero-freeness of independence polynomials arising from hypergraphs. A fundamental question raised focuses on whether sampling using traditionally first-order Markov chain dynamics from a discrete finite set with a prescribed distribution can be accelerated, using certain second-order dynamics. While the initial investigation suggests such a speed-up of spectral gap is feasible, it is unclear how to simulate such a process in the context of discrete (or continuous)-time random walks on a discrete space. A second topic addresses a quest for a deeper understanding of sampling and counting independent sets in hypergraphs. As direct counting of these objects is well-known to be intractable; probabilistic aspects by way of cluster expansion and zeros of hypergraph polynomials are considered as potentially fruitful directions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及与概率、组合学、统计力学和优化领域重叠的基础研究方向。技术挑战包括加速离散结构(例如图)上的随机游走、仅限于特殊格子子集的经典随机游走的优化分析,以及开发从图到超图的新组合枚举技术。由此产生的方法具有在统计物理学中应用的潜力。 一些应用程序,例如流动消防员问题,是受到实际挑战的启发,并将产生重要的社会影响。该项目为学生提供培训机会。 PI 将继续举办说明性讲座系列以及工作组活动,以支持初级研究人员,包括来自代表性不足的少数群体的研究人员。该项目包括加速随机游走以实现更快的采样,其灵感来自朗之万动力学和持续优化的加速技术;对分布晶格上约束随机游走的混合时间的严格估计,这项研究最初是由方晶格上键渗流的动力学方面激发的;以及由超图产生的簇扩展和独立多项式的零自由度的发展。提出的一个基本问题集中在是否可以使用某些二阶动力学来加速使用传统的一阶马尔可夫链动力学从具有规定分布的离散有限集进行采样。虽然初步调查表明这种谱间隙加速是可行的,但尚不清楚如何在离散空间上的离散(或连续)时间随机游走的背景下模拟这样的过程。第二个主题致力于更深入地理解超图中独立集合的采样和计数。 众所周知,直接计算这些物体是很困难的;通过聚类扩展和超图多项式零点的概率方面被认为是潜在富有成效的方向。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prasad Tetali其他文献

The Number of Linear Extensions of the Boolean Lattice

Prasad Tetali的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prasad Tetali', 18)}}的其他基金

Conference: 2024 19th Annual Graduate Students Combinatorics Conference
会议:2024年第19届研究生组合学年会
  • 批准号:
    2334815
  • 财政年份:
    2024
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
New Approaches to Questions in Sampling, Counting, and Optimization
解决采样、计数和优化问题的新方法
  • 批准号:
    2055022
  • 财政年份:
    2021
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Discrete Convexity, Curvature, and Implications
离散凸性、曲率和含义
  • 批准号:
    1811935
  • 财政年份:
    2018
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Graph Structure, the Four Color Theorem, and Generalizations
图结构、四色定理和概括
  • 批准号:
    1700157
  • 财政年份:
    2017
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Continuing Grant
EAGER: Physical Flow and other Industrial Challenges
EAGER:物理流动和其他工业挑战
  • 批准号:
    1415496
  • 财政年份:
    2014
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Displacement Convexity, Curvature and Concentration in Discrete Settings
离散设置中的位移凸度、曲率和浓度
  • 批准号:
    1407657
  • 财政年份:
    2014
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Continuing Grant
Random graph interpolation, Sumset inequalities and Submodular problems
随机图插值、和集不等式和子模问题
  • 批准号:
    1101447
  • 财政年份:
    2011
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Extremal Problems in Combinatorics and Their Applications
组合学中的极值问题及其应用
  • 批准号:
    0901355
  • 财政年份:
    2009
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Information Inequalities and Combinatorial Applications
信息不等式和组合应用
  • 批准号:
    0701043
  • 财政年份:
    2007
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Continuing Grant
Graph Homomorphisms, Stochastic Networks, Discrete Mass Transport
图同态、随机​​网络、离散质量传输
  • 批准号:
    0401239
  • 财政年份:
    2004
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

NEON LTAR Workshop: Identifying Continent Scale Questions and Approaches for Advancing the Sustainable Intensification of US Agriculture
NEON LTAR 研讨会:确定大陆规模问题和促进美国农业可持续集约化的方法
  • 批准号:
    2044293
  • 财政年份:
    2021
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
New Approaches to Questions in Sampling, Counting, and Optimization
解决采样、计数和优化问题的新方法
  • 批准号:
    2055022
  • 财政年份:
    2021
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Statistical Approaches to Topological Data Analysis that Address Questions in Complex Data
FRG:协作研究:解决复杂数据问题的拓扑数据分析统计方法
  • 批准号:
    2038556
  • 财政年份:
    2020
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Statistical Approaches to Topological Data Analysis that Address Questions in Complex Data
FRG:协作研究:解决复杂数据问题的拓扑数据分析统计方法
  • 批准号:
    1854220
  • 财政年份:
    2019
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Statistical Approaches to Topological Data Analysis that Address Questions in Complex Data
FRG:协作研究:解决复杂数据问题的拓扑数据分析统计方法
  • 批准号:
    1854336
  • 财政年份:
    2019
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
A Study on Home Economics Teacher Training Curriculum that Questions the Essence of Subjects and Approaches General-Purpose Skills
质疑学科本质、接近通用技能的家政师资培训课程研究
  • 批准号:
    19K02814
  • 财政年份:
    2019
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The reptile-mammal jaw transition as revealed by 3D imaging, embryology, and computational biomechanics: new approaches to some age old questions.
3D 成像、胚胎学和计算生物力学揭示的爬行动物-哺乳动物下颌转变:解决一些古老问题的新方法。
  • 批准号:
    DP140102656
  • 财政年份:
    2014
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Discovery Projects
Development of inovating high-pressure and high-temperature apparatus for neutron diffraction and approaches to unsolved questions on ices and planetary sciences
开发用于中子衍射的创新高压高温装置以及解决冰和行星科学未解决问题的方法
  • 批准号:
    26246039
  • 财政年份:
    2014
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Undergraduate Research in Biological Diversity: Phylogenetic Approaches to Biological Questions
生物多样性本科生研究:生物学问题的系统发育方法
  • 批准号:
    0139653
  • 财政年份:
    2002
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
The nature of self-recognition: novel approaches to vexing questions
自我认知的本质:解决棘手问题的新方法
  • 批准号:
    DP0208300
  • 财政年份:
    2002
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了