Invariants of incidence matrices, difference sets and strongly regular graphs
关联矩阵、差分集和强正则图的不变量
基本信息
- 批准号:0701049
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant will support the PI and his collaborators to work on invariants of incidence matrices, difference sets, strongly regular graphs and the related error-correcting codes. Incidence matrices arise whenever one considers relations between two finite sets. Invariants of incidence matrices, such as p-ranks and Smith normal forms, can reveal a great deal of information of the underlying incidence structures. The PI plans to continue his research on various geometric incidence matrices, such as the subspace-inclusion matrices and their symplectic analogues. The Smith normal form results will have interesting geometric applications, for example, in classifying ovoids in three-dimensional projective space over a finite field of even order. Other topics of research include constructions and nonexistence proofs of difference sets and strongly regular graphs. The PI's investigation will make use of techniques from several different areas of mathematics, including representation theory, p-adic number theory and combinatorics.Incidence matrices play an important role in many parts of discrete mathematics, including the theory of error-correcting codes. Most of the incidence matrices considered in this proposal can be used to generate low density parity check codes. Efficient error-correcting codes are used nowadays in our daily life, for example, in CD players, high speed modems, and cellular phones. Cyclic difference sets are the same objects as binary sequences with two-level periodic autocorrelation functions. Such sequences have many applications in radar, spread-spectrum communications and cryptography. This project will concentrate on the study of invariants of incidence matrices and the existence questions of difference sets.
这笔赠款将支持 PI 及其合作者研究关联矩阵、差异集、强正则图和相关纠错码的不变量。每当考虑两个有限集之间的关系时,就会出现关联矩阵。关联矩阵的不变量,例如 p 秩和 Smith 范式,可以揭示潜在关联结构的大量信息。 PI 计划继续研究各种几何关联矩阵,例如子空间包含矩阵及其辛类似矩阵。史密斯范式结果将具有有趣的几何应用,例如,在偶数阶有限域上的三维射影空间中对卵形进行分类。其他研究主题包括差异集和强正则图的构造和不存在证明。 PI 的调查将利用多个不同数学领域的技术,包括表示论、p 进数论和组合数学。关联矩阵在离散数学的许多部分中发挥着重要作用,包括纠错码理论。本提案中考虑的大多数关联矩阵可用于生成低密度奇偶校验码。如今,高效的纠错码已广泛应用于我们的日常生活中,例如 CD 播放器、高速调制解调器和蜂窝电话。循环差分集与具有两级周期性自相关函数的二进制序列是相同的对象。此类序列在雷达、扩频通信和密码学中有许多应用。该项目将集中研究关联矩阵的不变量和差异集的存在性问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Xiang其他文献
Constructions of strongly regular Cayley graphs and skew Hadamard difference sets from cyclotomic classes
强正则凯莱图的构造和分圆类的偏斜哈达玛差分集
- DOI:
10.1007/s00493-014-2895-8 - 发表时间:
2012-01 - 期刊:
- 影响因子:1.1
- 作者:
冯涛;Koji Momihara;Qing Xiang - 通讯作者:
Qing Xiang
Extraction of power lines from mobile laser scanning data
从移动激光扫描数据中提取电源线
- DOI:
10.1117/12.2234848 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Qing Xiang;Jonathan Li;Chenglu Wen;Pengdi Huang - 通讯作者:
Pengdi Huang
The potential ecological risk assessment of soil heavy metals using self-organizing map
- DOI:
10.1016/j.scitotenv.2022.156978 - 发表时间:
2022 - 期刊:
- 影响因子:9.8
- 作者:
Qing Xiang;Huan Yu;Hongliang Chu;Mengke Hu;Tao Xu;Xiaoyu Xu;Ziyi He - 通讯作者:
Ziyi He
Dual-functional biomimetic periosteum with electrical activity and antibacterial property: Sulfonated polyaniline/polypyrrole codoped polycaprolactone scaffold for electrically driven bone-nerve regeneration
具有电活性和抗菌性能的双功能仿生骨膜:磺化聚苯胺/聚吡咯共掺杂聚己内酯支架用于电驱动骨 - 神经再生
- DOI:
10.1016/j.apsusc.2025.163636 - 发表时间:
2025-10-30 - 期刊:
- 影响因子:6.900
- 作者:
Shengdong Liu;Yilong Zheng;Qing Xiang;Zhufeng Yuan;Huanhuan Zhang;Yonggang Min - 通讯作者:
Yonggang Min
Exploration of common molecular mechanisms of psoriatic arthritis and aging based on integrated bioinformatics and single-cell RNA-seq analysis
基于整合生物信息学和单细胞RNA测序分析对银屑病关节炎和衰老的共同分子机制的探索
- DOI:
10.1016/j.bbadis.2025.167730 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.200
- 作者:
Shuang Liu;Peng Pu;Qing Xiang;Xiangling Pu - 通讯作者:
Xiangling Pu
Qing Xiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Xiang', 18)}}的其他基金
Conference on Finite Geometry and Extremal Combinatorics
有限几何与极值组合学会议
- 批准号:
1916466 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Algebraic Methods in Combinatorics and Finite Geometry
组合学和有限几何中的代数方法
- 批准号:
1600850 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference on Designs, Codes, and Geometries
设计、规范和几何形状会议
- 批准号:
0962694 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Modular Ranks of Incidence Matrices and Related Topics
关联矩阵的模块化排序及相关主题
- 批准号:
1001557 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
- 批准号:
10749672 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Causes and Downstream Effects of 14-3-3 Phosphorylation in Synucleinopathies
突触核蛋白病中 14-3-3 磷酸化的原因和下游影响
- 批准号:
10606132 - 财政年份:2024
- 资助金额:
-- - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
- 批准号:
10750765 - 财政年份:2024
- 资助金额:
-- - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Observation of pattern formation in low-energy electron diffraction (LEED) under single electron incidence conditions
单电子入射条件下低能电子衍射 (LEED) 图案形成的观察
- 批准号:
23K11711 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Environmental factors and risk of autoimmune rheumatic disease incidence and serology
环境因素和自身免疫性风湿病发病率和血清学的风险
- 批准号:
498306 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Occupational exposure to ionizing radiation and the impacts on cancer incidence, and mortality: a record linkage cohort study of nearly one million workers in the Canadian National Dose Registry
电离辐射的职业暴露及其对癌症发病率和死亡率的影响:一项针对加拿大国家剂量登记处近百万工人的创纪录的连锁队列研究
- 批准号:
480070 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Urinary Phthalate Biomarker Concentrations and Breast and Prostate Cancer Risk in a National Cohort of Adults in Canada
加拿大全国成人队列中尿液邻苯二甲酸盐生物标志物浓度与乳腺癌和前列腺癌风险
- 批准号:
494953 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants