Conference on Finite Geometry and Extremal Combinatorics
有限几何与极值组合学会议
基本信息
- 批准号:1916466
- 负责人:
- 金额:$ 3.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will provide support for the conference "Finite Geometry and Extremal Combinatorics" which will be held at University of Delaware from August 21 to August 24, 2019. The conference will focus on finite geometry, extremal combinatorics, and their interactions with other subareas of combinatorics. Combinatorics is an area of mathematics primarily concerned with properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics, from evolutionary biology to computer science, etc.The goal of this conference is to bring together researchers from finite geometry and extremal combinatorics in one setting to discuss recent developments. It is expected that there will be considerable cross-fertilization of ideas leading to people learning new problems and new techniques from each other. The conference will feature seven invited speakers who are leading experts in the aforementioned areas of combinatorics. There also will be 18 contributed talks. Particular efforts will be made by the PI and the co-PIs to encourage junior and/or female researchers to attend and speak at this conference. Further details about the conference can be found at the conference website https://www.mathsci.udel.edu/fgec19This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将为将于2019年8月21日至8月24日在特拉华大学举行的《有限几何与极值组合学》会议提供支持。会议将集中讨论有限几何、极值组合数学,以及它们与组合数学其他子领域的相互作用。组合学是一个主要研究有限结构性质的数学领域。它与数学的许多其他领域密切相关,并有许多应用,从逻辑到统计物理,从进化生物学到计算机科学等。这次会议的目标是将有限几何和极值组合数学的研究人员聚集在一个环境中,讨论最近的发展。预计将会有相当大的思想交流,导致人们相互学习新问题和新技术。这次会议将邀请7位演讲者,他们是上述组合学领域的领先专家。还将有18场贡献演讲。主计委和共同主计长将作出特别努力,鼓励初级和/或女性研究人员出席本次会议并在会上发言。有关会议的更多细节可以在会议网站上找到,https://www.mathsci.udel.edu/fgec19This奖反映了美国国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Xiang其他文献
Constructions of strongly regular Cayley graphs and skew Hadamard difference sets from cyclotomic classes
强正则凯莱图的构造和分圆类的偏斜哈达玛差分集
- DOI:
10.1007/s00493-014-2895-8 - 发表时间:
2012-01 - 期刊:
- 影响因子:1.1
- 作者:
冯涛;Koji Momihara;Qing Xiang - 通讯作者:
Qing Xiang
Extraction of power lines from mobile laser scanning data
从移动激光扫描数据中提取电源线
- DOI:
10.1117/12.2234848 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Qing Xiang;Jonathan Li;Chenglu Wen;Pengdi Huang - 通讯作者:
Pengdi Huang
The potential ecological risk assessment of soil heavy metals using self-organizing map
- DOI:
10.1016/j.scitotenv.2022.156978 - 发表时间:
2022 - 期刊:
- 影响因子:9.8
- 作者:
Qing Xiang;Huan Yu;Hongliang Chu;Mengke Hu;Tao Xu;Xiaoyu Xu;Ziyi He - 通讯作者:
Ziyi He
Dual-functional biomimetic periosteum with electrical activity and antibacterial property: Sulfonated polyaniline/polypyrrole codoped polycaprolactone scaffold for electrically driven bone-nerve regeneration
具有电活性和抗菌性能的双功能仿生骨膜:磺化聚苯胺/聚吡咯共掺杂聚己内酯支架用于电驱动骨 - 神经再生
- DOI:
10.1016/j.apsusc.2025.163636 - 发表时间:
2025-10-30 - 期刊:
- 影响因子:6.900
- 作者:
Shengdong Liu;Yilong Zheng;Qing Xiang;Zhufeng Yuan;Huanhuan Zhang;Yonggang Min - 通讯作者:
Yonggang Min
Exploration of common molecular mechanisms of psoriatic arthritis and aging based on integrated bioinformatics and single-cell RNA-seq analysis
基于整合生物信息学和单细胞RNA测序分析对银屑病关节炎和衰老的共同分子机制的探索
- DOI:
10.1016/j.bbadis.2025.167730 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.200
- 作者:
Shuang Liu;Peng Pu;Qing Xiang;Xiangling Pu - 通讯作者:
Xiangling Pu
Qing Xiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Xiang', 18)}}的其他基金
Algebraic Methods in Combinatorics and Finite Geometry
组合学和有限几何中的代数方法
- 批准号:
1600850 - 财政年份:2016
- 资助金额:
$ 3.14万 - 项目类别:
Continuing Grant
Conference on Designs, Codes, and Geometries
设计、规范和几何形状会议
- 批准号:
0962694 - 财政年份:2010
- 资助金额:
$ 3.14万 - 项目类别:
Standard Grant
Modular Ranks of Incidence Matrices and Related Topics
关联矩阵的模块化排序及相关主题
- 批准号:
1001557 - 财政年份:2010
- 资助金额:
$ 3.14万 - 项目类别:
Continuing Grant
Invariants of incidence matrices, difference sets and strongly regular graphs
关联矩阵、差分集和强正则图的不变量
- 批准号:
0701049 - 财政年份:2007
- 资助金额:
$ 3.14万 - 项目类别:
Continuing Grant
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Three-manifolds with finite volume, their geometry, representations, and complexity
职业:有限体积的三流形、它们的几何形状、表示形式和复杂性
- 批准号:
2142487 - 财政年份:2022
- 资助金额:
$ 3.14万 - 项目类别:
Continuing Grant
Arithmetic Geometry and Dynamics over Finite Fields
有限域上的算术几何和动力学
- 批准号:
557298-2021 - 财政年份:2022
- 资助金额:
$ 3.14万 - 项目类别:
Postdoctoral Fellowships
Finite dimensional integrable systems and differential geometry
有限维可积系统和微分几何
- 批准号:
DP210100951 - 财政年份:2022
- 资助金额:
$ 3.14万 - 项目类别:
Discovery Projects
Arithmetic Geometry and Dynamics over Finite Fields
有限域上的算术几何和动力学
- 批准号:
557298-2021 - 财政年份:2021
- 资助金额:
$ 3.14万 - 项目类别:
Postdoctoral Fellowships
Extremal combinatorics meets finite geometry
极值组合满足有限几何
- 批准号:
DE190100666 - 财政年份:2019
- 资助金额:
$ 3.14万 - 项目类别:
Discovery Early Career Researcher Award
Problems in Extremal Combinatorics and Finite Geometry
极值组合学和有限几何问题
- 批准号:
1855723 - 财政年份:2019
- 资助金额:
$ 3.14万 - 项目类别:
Standard Grant
Geometry and Groups: Enumeration and Finite Representations
几何和群:枚举和有限表示
- 批准号:
1812153 - 财政年份:2018
- 资助金额:
$ 3.14万 - 项目类别:
Standard Grant
Elements:Software:Open-Source Robust Geometry Toolkit for Black-Box Finite Element Analysis
Elements:软件:用于黑盒有限元分析的开源稳健几何工具包
- 批准号:
1835712 - 财政年份:2018
- 资助金额:
$ 3.14万 - 项目类别:
Standard Grant
New constructions of designs, graphs and codes over finite fields based on finite geometry and algebraic methods
基于有限几何和代数方法的有限域上的设计、图形和代码的新构造
- 批准号:
17K14236 - 财政年份:2017
- 资助金额:
$ 3.14万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Additive combinatorics, arithmetic algebraic geometry and finite fields
加法组合学、算术代数几何和有限域
- 批准号:
DP170100786 - 财政年份:2017
- 资助金额:
$ 3.14万 - 项目类别:
Discovery Projects