Topics in Algebraic Design Theory

代数设计理论专题

基本信息

  • 批准号:
    0400411
  • 负责人:
  • 金额:
    $ 11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

The project addresses several problems of central importance in the areas of designs, codes and association schemes. The emphasis will be on the use of algebraic and number theoretic methods in the above areas. Topics of the proposed research include Smith normal forms of subspace-inclusion matrices (q-analogues of the subset-inclusion matrices); connections between difference sets and maximal arcs in projective spaces; strongly regular graphs, two-weight codes and association schemes. Number theoretic tools, such as Gauss and Jacobi sums, have been used with success by the PI and others in all of the afforementioned topics. It is expected that deeper p-adic number theory and representation theory of the general linear group will be necessary in the further investigations of these topics. Combinatorial designs first arose in recreational mathematics problems, such as Kirkman's 15 schoolgirls problem, and later in the design of statistical experiments. They found many applications in coding theory, finite geometry, cryptography, computer science, and electrical engineering. Designs and codes are intimately related. Many efficient error-correcting codes are constructed from designs. These codes are used nowadays in our daily life, for example, in CD players, high-speed modems, and cellular phones. This proposal investigates several problems in the interface of designs and codes, and gives summer support for a graduate student who will study and work in the areas of design theory and coding theory related to the above mentioned applications.
该项目解决了设计、规范和联合方案领域的几个核心问题。重点将放在使用代数和数论方法在上述领域。拟议的研究课题包括史密斯正规形式的子空间包含矩阵(q-类似物的子集包含矩阵);之间的连接差集和极大弧在射影空间;强正则图,两个重量码和关联计划。数论工具,如高斯和雅可比和,已被PI和其他人成功地用于所有上述主题。我们期望在这些课题的进一步研究中,更深入的p进数理论和一般线性群的表示理论将是必要的。组合设计首先出现在娱乐数学问题中,如柯克曼的15个女学生问题,后来出现在统计实验的设计中。他们发现许多应用在编码理论,有限几何,密码学,计算机科学和电气工程。设计和代码是密切相关的。许多有效的纠错码都是从设计中构造出来的。这些代码现在在我们的日常生活中使用,例如,在CD播放器,高速调制解调器和蜂窝电话中。该提案调查了设计和代码接口中的几个问题,并为将在与上述应用相关的设计理论和编码理论领域学习和工作的研究生提供夏季支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qing Xiang其他文献

Constructions of strongly regular Cayley graphs and skew Hadamard difference sets from cyclotomic classes
强正则凯莱图的构造和分圆类的偏斜哈达玛差分集
  • DOI:
    10.1007/s00493-014-2895-8
  • 发表时间:
    2012-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    冯涛;Koji Momihara;Qing Xiang
  • 通讯作者:
    Qing Xiang
Extraction of power lines from mobile laser scanning data
从移动激光扫描数据中提取电源线
The potential ecological risk assessment of soil heavy metals using self-organizing map
  • DOI:
    10.1016/j.scitotenv.2022.156978
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Qing Xiang;Huan Yu;Hongliang Chu;Mengke Hu;Tao Xu;Xiaoyu Xu;Ziyi He
  • 通讯作者:
    Ziyi He
Exploration of common molecular mechanisms of psoriatic arthritis and aging based on integrated bioinformatics and single-cell RNA-seq analysis
基于整合生物信息学和单细胞RNA测序分析对银屑病关节炎和衰老的共同分子机制的探索
Dual-functional biomimetic periosteum with electrical activity and antibacterial property: Sulfonated polyaniline/polypyrrole codoped polycaprolactone scaffold for electrically driven bone-nerve regeneration
具有电活性和抗菌性能的双功能仿生骨膜:磺化聚苯胺/聚吡咯共掺杂聚己内酯支架用于电驱动骨 - 神经再生
  • DOI:
    10.1016/j.apsusc.2025.163636
  • 发表时间:
    2025-10-30
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Shengdong Liu;Yilong Zheng;Qing Xiang;Zhufeng Yuan;Huanhuan Zhang;Yonggang Min
  • 通讯作者:
    Yonggang Min

Qing Xiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qing Xiang', 18)}}的其他基金

Conference on Finite Geometry and Extremal Combinatorics
有限几何与极值组合学会议
  • 批准号:
    1916466
  • 财政年份:
    2019
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Algebraic Methods in Combinatorics and Finite Geometry
组合学和有限几何中的代数方法
  • 批准号:
    1600850
  • 财政年份:
    2016
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Conference on Designs, Codes, and Geometries
设计、规范和几何形状会议
  • 批准号:
    0962694
  • 财政年份:
    2010
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Modular Ranks of Incidence Matrices and Related Topics
关联矩阵的模块化排序及相关主题
  • 批准号:
    1001557
  • 财政年份:
    2010
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Invariants of incidence matrices, difference sets and strongly regular graphs
关联矩阵、差分集和强正则图的不变量
  • 批准号:
    0701049
  • 财政年份:
    2007
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Security analysis and design of post-quantum cryptography using algebraic methods
使用代数方法进行后量子密码学的安全分析和设计
  • 批准号:
    19K03640
  • 财政年份:
    2019
  • 资助金额:
    $ 11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Selection Methods for Algebraic Design of Experiments
协作研究:实验代数设计的选择方法
  • 批准号:
    1937717
  • 财政年份:
    2019
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research: Selection Methods for Algebraic Design of Experiments
协作研究:实验代数设计的选择方法
  • 批准号:
    1720341
  • 财政年份:
    2017
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
A new approach to design of experiments by computational algebraic methods
计算代数方法设计实验的新方法
  • 批准号:
    17K00048
  • 财政年份:
    2017
  • 资助金额:
    $ 11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Selection Methods for Algebraic Design of Experiments
协作研究:实验代数设计的选择方法
  • 批准号:
    1720335
  • 财政年份:
    2017
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Optimal design and operation of gas networks using general algebraic modelling system
使用通用代数建模系统优化天然气网络的设计和运行
  • 批准号:
    509369-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 11万
  • 项目类别:
    University Undergraduate Student Research Awards
Algebraic and analytical methods in design theroy
设计理论中的代数和分析方法
  • 批准号:
    312595-2010
  • 财政年份:
    2016
  • 资助金额:
    $ 11万
  • 项目类别:
    Discovery Grants Program - Individual
Observer design for linear switched differential-algebraic equations
线性切换微分代数方程的观测器设计
  • 批准号:
    259698622
  • 财政年份:
    2014
  • 资助金额:
    $ 11万
  • 项目类别:
    Research Grants
Workshop on Algebraic Design Theory and Hadamard Matrices, July 8 - 11, 2014
代数设计理论和 Hadamard 矩阵研讨会,2014 年 7 月 8 日至 11 日
  • 批准号:
    1439448
  • 财政年份:
    2014
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
New development of design of sampled-data control systems using Taylor expansion based on algebraic ideal
基于代数理想的泰勒展开采样控制系统设计新进展
  • 批准号:
    25420455
  • 财政年份:
    2013
  • 资助金额:
    $ 11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了